
’’oneywel

SERES 60(LEVEL 66)/6000

SOFTWARE

Honeywell TIME SHARING
TEXT EDITOR

SERIES 6O(LEVEL 66)/6000

SUBJECT:
* Description and Use of the Text Editor.

SPECIAL INSTRUCTIONS:

This manual replaces Time Sharing Text
Series 6000 System users. Order Number
System users and by Series 6000 System
releases.

Editor t Order Number BR40 for
BR40 must be used by Series 600
users who are on prior software

SOFTWARE SUPPORTED:

Series 60 Level 66 Software Release 2
Series 6000 Software Release H

DATE:

February 1975

ORDER NUMBER:
DD18, Rev.O

*

PREFACE

60

fcf

at a remote site. No programming knowledge is required of
The Series 60 Level 66 is hereafter referred to as Series
this manual refers to both the Series 6000 and the Series
specifically stated.

■K

ties
operator
perator.

I1

This manual describes the Text Editor feature of the Honeywell
Level 66 and Series 6000 System and is intended for use by the termin
at a remote site. No programming knowledge is required of the terminalffifcerator.

60. The inf caption in
60, ‘unless |Htherwise

I

.«■ •

(c) 1975, Honeywell Information Systems Inc. File No.: 1733,1P33

VS

DD18

CONTENTS

Page
Section; I Introduction. 1-1

Section II Text Editor and the Time Sharing System.............. 2-1
Text Editor.. 2-1
Time Sharing • 2-1
Connecting Terminal to the Computer................ 2-1
Log-On Procedure 2-1
Log-Off Procedure.................................. 2-2
Automatic Disconnection from the Time Sharing
System.. 2-2

Example of Terminal Operation and Procedures . . . 2-3
Error Messages and the HELP Subsystem............ 2-3
Printing or Punching Copies of a File............. 2-4
HOLD/SEND Subsystems 2-4

Section III EDITOR Subsystem....................... 3-1
EDITOR Subsystem Functions • •••*• 3—1
Entry to EDITOR Subsystem......................... 3-1
Building or Adding to a File..................... 3-2

Entering Text from Terminal Keyboard.......... 3-2
Line Numbered Files 3-3
Resequencing Line Numbered Files. 3-4
Entering Text from Paper Tape................. 3-5

Protecting Files . . . *........................... 3-6
Search Pointer Conventions 3-8
EDITOR Language. 3-9

Command Format.............,.................. 3-9
Operand Field of the Command................... 3-10

Mode Indicator............ 3-11
String Field......... 3-12
Repeat Field 3-13
#NO. 3-14
IGNORE Mode. 3-14

Responses from EDITOR 3-14
RUNOFF Format Control Words 3-16

Time Sharing System Control Commands 3-16
EDITOR Commands.................................... 3-17

STRING Command........... 3-17
LINE Command.................................... 3-18
BACKUP Command. 3-18

’ * LIMIT Function.................................. 3-18
* —WHERE Function........... 3-18.1

Octal Function. 3-18.1
Column Function . . •••••••••••••• 3-18.2
MASK Function............................. 3-18.3
Occurrence Function 3-18.3
PRINT Command.................................. 3-19
FIND Command. 3-22
REPLACE Command......... 3-25
DELETE Command..................... 3-29
INSERT Command........... 3-32
COPY Command.............. . . . 3-36
CUT Command............. 3-37

8/76 DD18A

CONTENTS (cont)

Section IV

Appendix A

Appendix B
Appendix C
Index

7/77

Page
PASTE Command.................................. 3-3 8
BUILD Command................................. 3-4 2
RUNOFF Command.................................. 3-4 3
VERIFY Command and NOVERIFY Command 3-43
CASE Command and STANDARD Command 3-44
MODE Command.................................... 3-4 5
TRANSPARENT Command 3-45
MARK Command.................................... 3-4 5
AFTLIN Command and BEFLIN Command 3-46

RUNOFF Subsystem...................................... 4-1
RUNOFF Commands.................................... 4-1

REFORM Command.................................. 4-2
PRINT Command.................................. 4-3
SKIP n Command.................................. 4-4
NOSTOP Command.................................. 4-4
NUMBER Command................ 4-4
EDITOR Command.................................. 4-4

RUNOFF Format Control Words....................... 4-5
Summary of EDITOR Commands............................. A-l

Summary of RUNOFF Commands and Control Words.......... B-l
RUNOFF Examples.................................. c-1

*•••••••••••••««•••••••••••• x—1

DD18B

SECTION I

INTRODUCTION

Text Editor, a major feature of the Time Sharing System, is a means by
which files consisting of text may be entered, edited, stored, retrieved, and
formatted. Text Editor consists of two subsystems—EDITOR and RUNOFF.

The EDITOR subsystem permits such text as correspondence, mailing lists,
inventories and records to be entered and readily modified by additions,
deletions, and corrections. The EDITOR subsystem is described in Section III.

The RUNOFF subsystem, in conjunction with EDITOR, permits the user to
specify the format in which text is to be reproduced. RUNOFF features include
the ability to specify the length of each line of text, the number of lines on a
page, and the size of page margins. All RUNOFF features are described in Section
IV.

Communication with the Time Sharing System and the computer is by means of
a terminal, rhe terminal used, of course, is determined by the user’s site.
Descriptions of terminal use in this manual assume a typical terminal. The user
snould read the operation manual of the terminal he is to use to become familiar
witn its operation. PSS Gone ral Information Manual, contains description of
operations o_ s e v e r a T t e rm in aT s that HouTd be used with the Time Sharing System.

Commands, format control words, and text are depicted in upper case in this
manual as a matter of expediency. If the terminal in use permits, the choice of
upper or lower case for text is a user’s prerogative. As for commands and format
control words, the Time Sharing System, the EDITOR subsystem, and the RUNOFF
subsystem recognize all such, regardless of case.

1-1 DD18

SECTION II

TEXT EDITOR AND THE TIME SHARING SYSTEM

TEXT EDITOR

The user of Text Editor must work within the confines of the Time Sharing
System to communicate with the computer and perform nonediting functions on the
files. The following paragraphs contain both background and essential
information concerning the Time Sharing System and its relation to the Text
Editor. The user should refer to the TSS General Information Manual for details
concerning the Time Sharing System.

TIME SHARING

Time sharing is the term used to describe the system by which a user
appears to be operating his terminal as if he has exclusive use of the computer.
The user can enter text files, modify and
retrieve the files at his convenience. If
Sharing System is used, he is informed
terminal.

delete parts, and then store and
errors are made in the way the Time
by error messages printed at his

CONNECTING TERMINAL TO THE COMPUTER

In order to connect with the computer from a terminal, proceed as follows:

>

1. Turn unit on and obtain a dial tone.
2. Dial one of the numbers at the Time Sharing Center.

When the connection is made, a high-pitched tone is received, then no tone
at all, and the terminal prints out an indication that the computer is available
and that communications with the computer, through the terminal, can now be
made.

LOG-ON PROCEDURE

With the terminal connected to the computer, the system initiates a
”log-on” procedure. During this procedure the terminal asks for information and
a proper response must be made, each response followed by a carriage return
(achieved by depressing the RETURN key). First, the terminal asks for a user’s
identification. This is a string of characters that is assigned to uniquely
identify the user to the computer for the purpose of identifying his program and
accounting for the user’s charges.

2-1 DD18

The terminal next asks for a password. The area on which the password is
printed is scored over by the terminal to make the password illegible. The
purpose of this password is to ensure the computer that it is "talking” to the
legitimate user and not someone else using his identification. The password is
his protection against unauthorized use of his user identification. If the
password is valid, the system prints an initial asterisk to indicate readiness
to accept system commands or subsystem names as input from the terminal.

A typical log-on sequence follows:

HIS SERIES 6000 ON 05/10/77 AT 9.183 CHANNEL 0012
USER ID—DOE
PASSWORD
MOlfOMO
★

LOG-OFF PROCEDURE

If the user types the control command BYE, the Time Sharing System gives
the user a summary of the amount of time and resources used this run and the
total amount of the user’s resources used to date. The Time Sharing System then
logs the user off by disconnecting the terminal.

AUTOMATIC DISCONNECTION FROM THE TIME SHARING SYSTEM

The user is automatically disconnected from the Time Sharing System for any
of the following reasons:

• If he responds twice with invalid user identifications. The terminal
replies after the first invalid* * use with the message ILLEGAL
ID—RETYPE—. If the user responds with an invalid user
identification a second time, he is disconnected.

• If he responds twice with invalid passwords. The terminal replies
after the first invalid use with the message ILLEGAL
PASSWORD—-RETYPE--. If the user responds with an invalid password a
second time, he is disconnected.

>

• If more than one minute passes without a user response to user
identification or password request.

• If he leaves the terminal in an idle state for over ten minutes.
• If his resources are overdrawn by more than 10 per cent. The message,"

RESOURCES EXHAUSTED. CANNOT ACCEPT YOU, is printed by the terminal
before disconnection takes place.

7/77 2-2 DD18B

EXAMPLE OF TERMINAL OPERATION AND PROCEDURES

The following elementary example illustrates steps in terminal operation
and procedures required for entering text and saving the file.

HIS SERIES 6000
ON 01/15/77 AT 9.891 CHANNEL 0020

Acknowledgment of
terminal connection
to Time Sharing System.

USER ID --DOE
PASSWORD--
XHXEEKSHXXK
*EDITOR
-BUILD
ENTER

4"' “ «■»

*text — —— —
*Carriage return upon completion
-SAVE filename
DATA SAVED filename
BYE
**RESOURCES USED $ 0.32, USED
TO DATE $ 35.00-10%
**TIME SHARING OFF AT 10.006
ON 01/15/77

Log-on procedure.

of text
Request to save file
File saved.
Log-off procedure and
accounting.

The EDITOR can be entered from another subsystem when the user issues a (-)
followed by a recognizable Text Editor command. For example:

USER ID—DOE
PASSWORD--
XXXXXXXXXXXX
*FORTRAN OLD FORT1
*-PRINT
THIS IS THE ABC PROGRAM
*-REPLACEVS:/ABC/:/XYZ/
THIS IS THE XYZ PROGRAM
*

User requests the EDITOR to print first
line of the file.

Replace string ABC with XYZ and verify (V).
The EDITOR prints the line as changed.
System returns to the FORTRAN build mode.

ERROR MESSAGES AND THE HELP SUBSYSTEM

Some user errors cause messages to appear at the terminal. These messages
are prefixed by an error code number. The messages are intended to be
self-explanatory and are brief. If a fuller explanation of the error is
required, the time, sharing HELP subsystem can be called.

DD18B

-- -.—.....—- -

The following example of the use of the HELP subsystem illustrates a
spelling error made by the user during log-on.

PLEASE ENTER MESSAGE NUMBER-9
THE REQUESTED SUBSYSTEM IS UNKNOWN TO TSS OR IS NOT
INCLUDED IN THE SYSTEM FOR THIS INSTALLATION. CHECK
THE NAME FOR SPELLING TOO.

*RANOFF
r-009-SYSTEM UNKNOWN
- *HELP

'—Error message
-—Typed out by HELP. Reply with error code number
—— Explanation typed by HELP

7/77 2-3.1 DD18B

PRINTING OR PUNCHING COPIES OF A FILE

If the user desires, the contents of a text file can be printed or punched
on cards at the computer's operational site. The printing process provides a
means of copying lengthy files quickly if a high-speed printer is available at
the site. The punching process generates a card deck copy, at the site, of a
file which may be convenient for duplication or storage.

The printing process is accomplished through BPRINT and the punching
process through BPUNCH, two subsystems of the Time Sharing System. The
following example illustrates the use of either of these subsystems.

*BPRINT1 filename
BPUNCH/

$ IDENT? account number,identification
LABELS? ASIS (This indicates the file is a text file and

does not contain line numbers.)
TAB CHARACTERS AND SETTINGS? t ,c ,c ,c ...; t ,c ,c ,c

(null, if no tabs are required)
t - tab character (see RUNOFF, Section IV)
c = column numbers

user can place the label and tab information in the first line of his
file, m which case, only the $ IDENT information is requested after a BPRINT or
BPUNCH typein. The format of this first line is as follows:

##ASIS t ,c ,c ;t ,c /C

Refer to the manual, TSS Terminal/Batch Interface for further
on the use of BPRINT and BPUNCH. ------ information

HOLD/SEND SUBSYSTEMS

The Time Sharing System issues information and warning messages that may
appear at the user’s terminal at any time. The injection of these messages into
a printout of a file or into a paper tape create activity is an annoyance which
can be eliminated by use of the HOLD/SEND subsystems of the Time Sharing System.

The HOLD response prevents Time Sharing
the terminal until such time as the user gives
the Time Sharing System that occurred while
appears, once the SEND response is given.

System messages from appearing at
a SEND. The last message from
the terminal was in the HOLD mode

7/77 2 — 4 DD18B

SECTION III

EDITOR SUBSYSTEM

EDITOR SUBSYSTEM FUNCTIONS

The EDITOR subsystem consists of functions that permit the user to perform
the following:

1. Build a text file.
2. Append to an existing text file.
3. Edit a text file by additions, deletions, or corrections.

A comprehensive set of editing commands are available for use by the EDITOR
subsystem to perform these functions.

ENTRY TO EDITOR SUBSYSTEM

to the initial asterisk with EDITOR. A hyphen (-) then appears to indicate the
availability of the EDITOR subsystem. |

What action the EDITOR subsystem takes upon being called is dependent upon I
the file accessed. The file accessed can be in one of two possible conditions:

1. The file contains no text, as in the case of a new file to be built,
or possibly no text exists in the file accessed by an OLD file name
response.

2. Text exists in the file accessed by an OLD file name response. |

7/77 3-1 DD18B

Under the first condition, wherein no text exists, the EDITOR subsystem
transmits the editing response, ENTER, to the terminal and calls upon the Time
Sharing System data collector to issue an asterisk. The asterisk indicates that
the system is in build mode and system commands or subsystem names are
acceptable. The entry sequence is as follows:

*EDITOR NEW
ENTER

*

Under condition two, wherein text does exist, the EDITOR subsystem accepts
any editing command following the hyphen response. The entry sequence is as
follows:

^EDITOR OLD filename
“(any editing^~c omm an d)

If the user desires to append data to the file filename, the editing
command BUILD is entered and an ENTER and asterisk are transmitted to the
terminal as in the first condition. The entry sequence is as follows:

^EDITOR OLD filename
-BUILD
ENTER
*

NOTE: In the first few examples shown, user entries are underscored, as a
teaching aid. These underscores are not part of the file and do not
appear with entries made at the terminal.

BUILDING OR ADDING TO A FILE

After the message, ENTER, and the initial data collector asterisk, two
methods can be used to build (create) or add to a file. Text can be entered
from the terminal via the keyboard, or from paper tape if the terminal is
equipped with a tape reader.

Entering Text From Terminal Keyboard

At the keyboard, begin typing in the desired text. After each carriage
return, the system types out an asterisk at the beginning of each new line.
This asterisk does not appear in the line of text in any printout of the file.

The following rules apply when entering text:

1. Text can be typed using both upper and lowercase letters if both are
available on the terminal.

7/77 3-2 DD18B

The desired text is typed immediately following the asterisk. All
characters, including spaces, typed after the asterisk appear in the
printout of the file.

*EDITOR NEW
ENTER
★THIS LINE IS TYPED WITHOUT LEADING SPACES.
* ~TH IS" LINE CO NTAl NS 5 "~L E AD INGS P AC £ S .
*(carriage return)
-PRINT;*
THIS LINE IS TYPED WITHOUT LEADING SPACES.

THIS LINE CONTAINS 5 LEADING SPACES.

END OF FILE

To insert a blank line, use the space bar and then the carriage
return.
As shown in the example, a carriage return immediately following the
asterisk terminates the text entry and produces the response. At
this point, editing or time sharing commands can be issued.

4. A carriage return is required at the end of every line of text entered
and upon completion of text entry.

5. On a keyboard/display type terminal, the first character typed in
replaces the asterisk. To terminate text entry and use an editing
command, type two pound signs (##) and a blank following the asterisk.

6. Service functions recognizable with text entry are #AUTO, #TAPE,
#LUCID, #RECOVER, and #ROLLBACK. Refer to the TSS General Information
Manual.

Line Numbered Files

Line numbers are not required by the EDITOR or RUNOFF subsystems, but line
numbered files are required by most of the other time sharing subsystems. The
user can employ the EDITOR and RUNOFF functions on line numbered files for later
use under another subsystem. The user can supply one to eight numeric
characters as the first entries for each line, or line numbers can be supplied
automatically by the Time Sharing System by the use of the #AUTO command in the
“BUILD” mode. #AUTO can be used as follows:

1. #AUTOMATIC
Causes the automatic creation of line numbers by the system, at the
point at which the automatic mode is entered (or re-entered), with
line numbers initially starting at 010 and incrementing by 10 (or, on
re-entry, resuming where the previous automatic numbering left off).
These line numbers appear in the terminal copy, and are written in the
file, just as though the user had typed them.

2. #AUTOMATIC n,m
Causes the automatic creation of line numbers, as above, but starting
with line number n and incrementing by m.

7/77 3-3 DD18B

3. #AUTOMATIC ,m
#AUTOMATIC n,

Causes automatic
incrementing by m,
re-entry, the line

creation of line numbers beginning
or beginning at n and incrementing
numbering resumes where it left off).

at 10 and
by 10 (on

Normally the line number is followed by a blank. Any nonblank, nonnumeric
character affixed to the end of the command #AUTOMATIC causes the blank to be
suppressed. For example: #AUTONB or #AUTOMATICX.

No commands are recognized while in the automatic mode. The automatic mode
is cancelled by giving a carriage return immediately following the issuance of
an asterisk and line number by the system. Upon leaving "#AUTO", return is to
the EDITOR BUILD" mode. The user may not use character delete (@) or line
delete (CTRL X) to delete characters associated with the generated line number
or its associated blank.

Resequencing Line Numbered Files

Ihe RESEQUENCE command can be used to resequence the line numbers of the
current file. Ihe RESE^UlNCE command must be utilized while in the '’edit** mode
of the Text Editor.

The description o£ the RESEQUENCE command is in the TSS General Information
Manual and repeated below for easy reference.■ ...

1. RESEQUENCE

Ihe line numbers of the current file* are resequenced. The resequencing
begins with line number 10 and continues in increments of 10. If BASIC
is the selected subsystem, the file is resequenced and statement
number references in the program are modified correspondingly (GOTO,
GOSUB, IF, ON, Print USING). If FORTRAN or CARDIN was selected,
statement number references are not affected.

2. RESEQUENCE n,m,x-y

The line numbers of the current file are resequenced and modifications
made according to the subsystem selection. The resequencing begins
with line number n and continues in increments of m.

x and £ are specified only if partial resequencing is desired, x gives
the starting point and y. ending point of resequencing, inclusive.
A null x field (i.e., -y) specifies from beginning of file to line y,
and a null y field (i.e., x-) specifies from line x to the end of
file. *

general, any blanks preceding a line number are stripped off.
Unnumbered lines are accepted, except under the BASIC subsystem, and
will nave line numbers added, as implied or specified in the command.
Care should be taken in resequencing concatenated BASIC files as line
numbers are also statement numbers, and statement references, after
resequencing, may become invalid.

3 4 DD18

3. RESEX n,m
Line numbers are inserted at the beginning of each line in the current
file, regardless of whether or not line numbers already exist. The
numbering begins with n and increments by m, or optionally, begins
with 10 and increments by 10, if n,m are not specified. If the first
character of the existing line is a numeric, a blank is inserted
following the generated line number. If the first character of the
existing line is not numeric, no blank is inserted.

4. RESE# n,m
Line numbers are inserted at the beginning of each line in the current
file, even if line numbers already exist. This numbering begins with
n and increments by m, or optionally begins with 10 and increments by
10 if n, m are not specified. If the first character of the existing
line is a numeric, a pound sign (#) is inserted following the
generated line number. If the first character of the existing line is
not numeric, the pound sign is not inserted.
CAUTION: When resequencing, or performing a partial resequence, it is

possible to produce files with line numbers out of order.
This may be caused by incorrect parameters on partial
resequence or when new line numbers exceed eight digits (in
non BASIC files). When line numbers are too large, a
warning is given. In either case, recovery may be made by
resequencing the total file using a smaller beginning line
number or a smaller increment.

Entering Text From Paper Tape

A text file can be created on paper tape to be entered into the computer at
a later time. To do this, put the terminal in LOCAL, feed enough tape through
the tape drive to ensure that there are no unwanted characters, and type the
text. A carriage return, line feed, and two rubouts must follow every line of
text. An X-OFF must indicate completion of the text, followed by two rubout
characters which provide a timing factor.

To use a prepared tape, enter the EDITOR subsystem, and type #TAPE
following the initial asterisk. When the READY response appears, put the
prepared tape in the terminal’s tape reader and turn on the tape drive. The
terminal must be in the online mode.

Input from the tape is accepted until the terminal operator stops the
reader, the tape runs out or jams, or an X-OFF character is read from the tape.
As the tape is being read, a copy of its contents is printed out on the
terminal. When tape input is complete, the system looks for an X-OFF prior to
transmitting a carriage return and printing an asterisk. At this time,
additional text may be entered at the keyboard or a carriage return can be given
to obtain the response and allow editing or printing.

8/76 3-5 DD18A

♦EDITOR NEW
ENTER
*#TAPE
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
TASK. EACH INSTRUCTION IS PERFORMED IN THE
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAYt
THE COMPUTER PROCESSES AND PRODUCES INFORMATION
AS DIRECTED BY THE PROGRAM.
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS
EXECUTED) ON A COMPUTER.
(X-OFF)
*(carriage return)

The #TAPE command can also be used to add text from paper tape to a text
file that has been built in a current session at the terminal or has been
previously saved (refer to the SAVE and OLD command descriptions in the TSS
General Information Manual).

-BUILD
ENTER
♦♦TAPE
(Read from
(X-OFF)
*(carriage

paper tape

return)

as described above.)

The #LUCID request is substituted for #TAPE for non-ASCII paper tape input.

A printout of the file shows text from paper tape appended to the original
text. r

Text from paper tape can be inserted into a file at any point in the file.
Refer to the description of ENTER under ’’Responses From EDITOR" in this section.

PROTECTING FILES

An automatic terminal disconnect, a computer or communication lines
malfunction, or user simply forgetting to save a file before shutting down can
cause the loss of input if the user"is building or adding to a file. A large
file requiring many hours or even days of typing input may be lost. The
following paragraphs describe methods of preventing such losses.

The simplest way to ensure against loss from any condition except computer
system malfunction is to save portions of the file at intervals while building.
In this way, only the last unsaved portion of the file would be subject to loss.
(See the following example.)

7/77 DD18B

♦EDITOR NEW
ENTE.i
♦text ------
♦text----——*
*
*
*

command.)

-Request for editing function
-Request for SAVE
-Verification of SAVE

-BUILD
ENTER

(At this point, you can use the editing commands to print or change the
file. For each succeeding save, use the RESAVE function and specify the
original name. If you wish to continue building this file, use the BUILD

♦text ----------
-★ (carriage return)
" -SAVE EXAM.l
-DATA SAVED—EXAM.l

NOTE: The use of commands #RECOVER, #ROLLBACK, OLDP, and OLDP# can provide
the user with additional means of file protection. Refer to the TS_S_
General Information Manual for details of use of these commands.

A paper tape of the file contents also provides a hard copy backup in case
a file must be rebuilt.

This tape can be punched as you build the file from the keyboard. The tape
will contain the asterisk printed by the system at the beginning of each line
and any lines which were deleted or corrected while building. (See the following
example.) If it is necessary to rebuild this file via tape, the rebuilt file
must be edited.

♦EDITOR NEW
ENTER
♦#TAPE
READY
♦HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARING
♦COMPUTER PROGRAMS BECAUSE THESE LANGUAGES
♦CONTAIN MANY AMBIGUITIES AND REDUNDANCIES;
♦THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY
♦LITERALLY. BY THE SAME TOKEN, MACHINE
♦LANGUAGES ARE ALSO IMPRACTICAL BECAUSE THEY ARE
♦DIFFICULT FOR PEOPLE TO USE. MOST PROGRAMMING
♦LANGUAGES ARE COMPROMISES BETWEEN HUMAN AND
♦MACHINE LANGUAGES.
(X-OFF)
♦(carriage return)

7/77 3-7 DD18B

To create a tape that does not require extensive editing, build a portion
of the file, enter the editing function, give a PRINT command, and punch the
tape as the file is being printed out. The following example illustrates this
method.

*text
*text
*(carriage return)
-PRINT;* (Do not type a carriage return until the tape drive has

been turned on and the following done:
(1) To ensure a clean tape, repeat the rubout character
until you have a tape leader long enough to be placed in
the tape drive.
(2) Backspace the tape once so that the carriage return
is wiped out by the last rubout character.

Type a carriage return.

The contents oi the file is typed out while the tape is being punched. The
message END OF FILE is punched into the tape. If the file must be rebuilt via
this tape, be sure to delete this message.

SEARCH POINTER CONVENTIONS

Each tile upon entering EDITOR has a search pointer associated with it.
This pointer is located at the beginning of the file until the first editing
command is given and is backed up a specified number of lines or returned to the
beginning of the file by the BACKUP command. The pointer always points to the
beginning of a line, never to a point within the line. This allows several edit
operations to be performed on the same line, so long as the operation does not
move the search pointer.

The rules governing the movement of the search pointer are as follows:

1. The PRINT, INSERT, REPLACE, DELETE, FIND, CUT, COPY, and PASTE
commands cause the search pointer to move forward toward the end of
the file, unless the command affects only the line at which the
pointer is already located - (usually a command with no operand field).

2. Following the execution of any of the commands listed in rule 1., the
pointer is located at the last line affected by the command.

3. The BUILD command positions the search pointer to the end of the file.
Exiting from the BUILD repositions the search pointer to the beginning
of the file.

4. The BACKUP command moves the search pointer backward to the beginning
of the file or a specified number of lines from wherever it is
located.

5. For commands involving a search operation--a string field is
specifled--the file is always searched starting at the current
location of the search pointer; the search is terminated either by a
successful comparison with the specified string field or by
encountering the end of the file. In the latter case, the pointer must
be backed up before any further editing operations may be performed.

NOTE: In the line mode, the search
backward by the use of +n or
number lines to move forward

pointer can be moved
-n with a search verb.
(+) or backward (-).

forward or
”n” is the

DD18

■-............. *...............

If a given line has already been passed by the search pointer, the BACKUP
command or a command with a -n mode must be used to backup the pointer to the
line to be operated on.

The current position of the search pointer can always be
using a PRINT command with no operand field.

determined by

The position of the search pointer is also affected by use of the terminal
"break” key to halt the file printout process. The position of the search
pointer at the time the break key is depressed is dependent upon the system
interfaces. If internal procedures have not been completed when the EDITOR
subsystem is notified, the search pointer is positioned back at the last
response. If the internal procedures have already been completed prior to
transmitting the - response to the terminal, then in all likelihood the search
pointer position and command execution is as if the break has not occurred.

The following symbols are used in some examples illustrating the location
of the search pointer:

OLocation of search pointer at the start of command execution.
OLocation of search pointer at the finish of command execution.

<I>Location of search pointer at both start and finish of command execution.

EDITOR LANGUAGE

The EDITOR language is composed of editing commands given by the user while
working with a file and responses from the EDITOR subsystem to the user.

»■

Command Format
..... II w I. llTHW»lll.— » .TUIII ■> I

An EDITOR command may be a single verb only or a verb plus modifier. The
modifiers specify variations from the-standard operation of the verb and make up
the "operand field" of the command. In the examples of command format below,
everything following the verb is part of the operand field and, therefore,
optional. When the operand field is used, the punctuation shown is required. No
intervening blanks are permitted in the command format. (Capitalization of the
verb is not required; it is done here to illustrate format.)

VERB
VERBm;r
VERBm:st
VERBm:st+st
VERBm:st~st
VERBm:st;r
VERBm:st,st
VERBm:st:st
VERBm:st,st;r
VERBm:st;r:st

Where:
m is the mode indicator or +/-
r is the repeat field
st is the string field

9 DD18

An abbreviated form of some verbs is allowed; the abbreviation is the
initial letter of the verb.

BACKUP or B
COPY
CUT
DELETE or D
FIND or F
INSERT or I
PASTE
PRINT or P
REPLACE or R
CASE

The following verbs cannot have an operand field:
LINE or L
STRING or S
BUILD

RUNOFF
VERIFY
NOVERIFY

STANDARD

The use of the verbs and operands are fully explained and illustrated later
in this section. The restrictions and usage rules that apply to the operand
field are explained in ’’Operand Field of the Command” below.

The EDITOR responds to the commands
a command has been executed, a mistake
end of the file has been reached. These
from EDITOR", in this section.

with messages that inform the user when
in command format has been made, or the
messages are described in "Responses

Operand Field of the Command

The operand field of the command can contain one or more of the following:
• Mode indicator (used only when a string field is used)
» Plus (+)n or minus (-)n to move line pointer forward or backward (line

mode only) not applicable to BACKUP(B).
• String field, preceded by a colon
• Repeat field, preceded by a semicolon

If more than one of these items is used in a single command, the order must
be as shown above.

Insertion or replacement text can also be a
INSERT and REPLACE commands in this section.

part of the operand. Refer to

The letter V appended to a command results
to VERIFY and NOVERIFY commands in this section.

in command verification. Refer

The letter B appended to the INSERT command permits insertions immediately
before instead of after a specified line or string. Refer to the INSERT command
in this section.

8/76 3-10 DD18A

The following conventions concerning the effect of blanks and carriage
returns are used by EDITOR in searching:

Carriage returns can not be used for comparison purposes.
Consecutive blanks in the file must be matched exactly by the blanks
in the operand string field: n consecutive blanks in the string field
means n consecutive blanks in the corresponding position of the
character string in the file.

Certain commands permit two special forms of the string field to be used.
String identifiers can be combined by the use of the Boolean AND or OR
functions.

The searching conventions must
for searching to successfully locate

be remembered when specifying string
the desired portion of the file.

fields

REPEAT FIELD

The repeat field specifies the number of times an operation is to be
repeated. The field is always preceded by a semicolon and can contain a number
or an asterisk. A number states the exact number of repetitions wanted? the
asterisk (*) causes the operation to be repeated throughout the entire file.
When the field is left blank, the operation is performed only once and the
semicolon need not be used.

When the repeat field is used without a string field, the operation is
always performed in the line mode.

The effect of the repeat field
each command (see "EDITOR Commands"
examples are given below.

is explained in the detailed descriptions of
in this section). However, a few brief

PRINT;5 (Prints five lines,
pointer.)

beginning at the location of the search

PRINT:/YOU/?3 (Prints the first three lines encountered beginning with the
characters YOU. This would include YOUR, YOURS, YOU’RE, etc.)
PRINTS:/YOU/;3 (Prints the lines containing the first three occurrences of
the characters YOU. This results in three lines of print, possibly the
same line repeated if all three occurrences are in the same line.)
PRINT;* (Prints the complete file from the location of the search pointer.)

8/76 3-13 DD18A

The difference between string and line mode requirements is as follows:

LINE

The line field must contain
the initial characters of the
line as it appears in the
file.

STRING

The string field can contain
any characters in the line.
(Caution: If the string to be
operated upon appears twice
in the same line and the
second occurrence is where
the change is to be made, be
sure to include enough
characters from the preceding
or following word to make the
string unique.)

#N0 MODE

The #N0 mode allows a user
the line numbers. This mode is to print a line numbered file

reset by typing #YES. without printing

IGNORE MODE

The IGNORE mode allows the user to disregard line numbers while making
modifications to a file using string functions. During execution, each line is
scanned commencing with the first character of the line. The first nonnumeric
character encountered is established as the first character of the line To
reset the mode to normal, the user types NOIG.

iliTION: Vihen the first character of the line is a numeric, some
nonnumeric character should be inserted following the line
numbe r.

Responses from EDITOR
, ^^•Tianni»>rl rnm • -,1 - w i.ihui t--|r-■ L - ;T-r r- - - - ■ -. _ - -

• \

~ (hyphen)

The last command has been executed and EDITOR is ready to accept
either another EDITOR command or a Time Sharing System command.

ENTER

This response to a REPLACE, INSERT, or
that the replacement, insertion, or
entered.

BUILD command informs the user
additional text can now be

An asterisk appears after the ENTER response, indicating that the
time-sharing data collector now accepts text entry.

7/77 3-14 DD18B

LIMIT REACHED

This message occurs only when a repeat field is used with an INSERT or
REPLACE command and the text being entered exceeds the buffer
capacity. All text input before the LIMIT REACHED message is entered
into the file as many times as specified by the last repeat field.
The search pointer will be at the last location altered.

To continue inserting or replacing text, back up and find the starting
point, repeat the REPLACE or INSERT command and continue entering the
rest of the text.

END OF FILE

This message occurs when the search pointer has reached the end of the
file. This is the normal response to a command with an * in the
repeat field. It also occurs when the specified string field does not
appear in the file.

Following this message, a BACKUP command should be given if more work
is to be done on the file.

COMMAND UNKNOWN

EDITOR does not recognize the command, either because it is illegal or
because it is misspelled. This response may cause the EDITOR search
pointer to be repositioned to the beginning of the current file. To
return to the place in the file where the faulty command was given,
the user can make use of the FIND command.

STRING ERROR

The command contains one or more of the following errors:
(1) The string mode has been specified but no string field has been

entered.

(2) The ending delimiter is missing.

(3) A character(s) has been typed on the same line following the
final delimiter.

REPEAT ERROR

The repeat field contains a character other than a number or *.
Retype the command correctly.

END OF FILE - REQUEST EXECUTED XX TIMES

The above message occurs when a repeat field is used and the repeat
field specified is greater than the number of occurrences in the file
or the repeat field is an asterisk. XX represents the number of times
the specified function was executed.

8/76 3-15 DD18A

PASTE NOT EXECUTED, NO DATA
The above message occurs as a result of one of two reasons:
(1) Either the user failed to cut or copy data prior to issuing a
PASTE command, or
(2) A system malfunction occurred preventing the data specified from
being cut or copied.

TEXT INSERTION ERROR
This message occurs as a result of a missing delimiter or text
following the terminating delimiter.

OPERAND ERROR
This message occurs as a result of an operand error. Either an
inappropriate operand, an operand utilized where operands are not
permitted, or an operand was expected and not found.

UNABLE TO CUT/COPY, NO FILE SPACE
Unable to cut or copy due to a lack of temporary file space to store
the cut or copied data.

CUT/COPY TRUNCATED, PERFORM PASTE TO CONTINUE
The above message occurs as a result of an extensive amount of text
being cut or copied, causing the cut/copy file to overflow. Performing
a paste function following this message allows continued use of
cut/copy file.

50 > WORK FILE, TABLE FULL, STATUS 36
50> WORK FILE, SYSTEM LOADED, STATUS 40
50 > WORK FILE, STATUS 10
52> CURRENT FILE NOT DEFINED
50> NO FILE SPACE, STATUS 13

LRefer to TSS General Information
Manual, for message explanations.

RUNOFF Format Control Words

RUNOFF format control words can be entered in the text file during the
building or editing phase of the EDITOR subsystem to achieve such text format as
spacing, indentation, and page numbering. These format control words remain
imbedded within the text file but are removed in a printout of the file by way
of the RUNOFF subsystem command REFORM. Refer to Section IV for descriptions of
RUNOFF subsystem commands and format control words.

TIME SHARING SYSTEM CONTROL COMMANDS

Time Sharing System control commands
saving or purging files, calling in other

perform nonediting functions ’(e.g.,
subsystems) for EDITOR. These control

commands can be entered immediately after the appearance of the - response, the
indicating system readiness to accept a command. Time Sharing System control

commands and their application to the EDITOR subsystem are described in the TSS
General Information Manual.

3-16 DD18

EDITOR COMMANDS

The EDITOR commands are described below in the following order (note the
permissible abbreviations):

STRING
LINE
BACKUP or B
PRINT or P
FIND or F
REPLACE or R
DELETE or D
INSERT or I
COPY
CUT
PASTE
BUILD
RUNOFF
VERIFY
NOVERIFY
CASE
STANDARD
MODE or M
TRANSPARENT or T
MARK
AFTLIN or A
BEFLIN or BEFL

EDITOR commands can be employed singly or in multiples, the only
restriction being that the one or more commands be contained on a single line.
With use of the single command, a response is issued upon command execution
and control is returned to the user. With multiple command use, the series of
commands are executed before the response is issued and control returned to
the user. Commands (and accompanying operands, if any) in a multiple command
line must be separated by one or more blanks. For example,

-F P;5 B;5 P;3 D;5

An unsuccessful command execution in
execution of any remaining commands.

a multiple command aborts the

NOTE: The slant is used as a delimiter to illustrate EDITOR commands
below. Any keyboard character, except a blank or control character,
can be used as a delimiter.

STRING Command

The STRING command causes the commands which follow to be executed in the
string mode. It is equivalent to adding the S mode indicator to each command
typed.

NOTE: Since the first four characters of STRING and STRIP are equivalent,
the system command STRIP does not function from within the Text
Editor; i.e., the string mode is set instead.

STRING never takes an operand field; however, if the commands which follow
STRING do not have a string field included, they operate as if in the line mode.

7/77 3-17 DD18B

-STRING
---- -PRINT; 6
O A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT

TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
TASK. EACH INSTRUCTION IS PERFORMED IN THE
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY,
THE COMPUTER PROCESSES AND PRODUCES INFORMATION

o AS DIRECTED BY THE PROGRAM.
-BACKUP

— -REPLACE:/TASK/
ENTER

<J> *JOB
* (carriage return)

-- -PRINT:/JOB/
JOB. EACH INSTRUCTION IS PERFORMED IN THE

— Line mode action
---String mode action
— String mode action

LINE Command

The LINE command counteracts the effect of STRING by placing EDITOR in the
line mode, its normal mode of operation. All commands operate in line mode
unless the S mode indicator is added to the verb. LINE never has an operand
field and is only used to nullify the STRING command.

BACKUP Command

The BACKUP command moves the search pointer backward the number of lines
specified in the operand field. If the operand field is blank, the pointer
backs up to the beginning of the file. The use of BACKUP is illustrated in the
examples given for other EDITOR commands.

The formats and execution are as follows:

Command
BACKUP
BACKUP;n

Execution
Tiiir_r jul nrcraT.-m.i.jwi iim

Backup search pointer to beginning of file.
Backup search pointer n consecutive lines.

LIMIT Function

The LIMIT function allows the user to specify a portion of a line numbered
file within which all further verb operations are restricted.

SAMPLE USAGE:

LIMIT:/203/,/506/ or L:/203/,/506/

This mode establishes a
the first line and line number
verbs are executed only within
numbers between 203 and 506.

subset of a file wherein the line numbered 203 is
506 is the last line. , All future function of
the range specified, i.e., lines which begin with

8/76 DD18A

When specifying "LIMIT”, if the current line pointer is located outside of
the range specified, the pointer will be automatically positioned within the
limits range. When returning to the normal "NORM" mode, the line pointer will
remain pointing at the last line accessed while in the "LIMIT" mode.

It is possible to insert "BEFORE" or "FOLLOWING" the specified limited
range. If the line numbers of the line(s) inserted are less than or greater
than (respectively) the original limit range, the specified limits remain in
effect. However, if the line numbers of the line(s) inserted are encompassed
within the original limits range, the range is adjusted to include those lines
inserted.

NOTE : The LIMIT mode can not function with Automatic Line Numbering
(#AUTO) or RESEQUENCE.

To reset the mode to normal, the user need only type in NORM.

WHERE Function

The WHERE function provides the user with the current internal block number
and the location of the current line within the block. For example:

-WHERE (User types "WHERE" - short form "W" is acceptable)

OCTL BLK#xxxx (Text Editor identifies the current block
number)

RCW=nnn (Text Editor identifies the address of the
current line)

Where: xxxx is the current block number (octal) and nnn is the address of
the current line RCW (record control word) within the current
block r

Usage is principally technical, where a user desires to interrogate octal
data within a file, or to patch data within a file. The octal block number
cannot exceed 7777, otherwise the count will roll over, providing a false block
numbe r.

Octal Function

The "OCTL d"
to precede an octal

function allows the user to designate a unique character (d)
number. For example:

-OCTL $ (User identifies the dollar sign as the octal
delimiter to be used)
(Print the current line)

on at 9.084 - off at 9.140 on 06/24/75
-RS:/at/;2:/$100/ (Replace the string "at" twice with the

octal character 100 ())

(Print the current line)
on 9.084 - off 9.140 on 06/24/75

7/77 3-10.1 DD18B

The OCTL delimiter is functional within the build mode of the
providing the mode was set prior to entering BUILD. For example:

Text Editor

-OCTL % (User defines the percent sign as the octal delimiter)
-BUILD (User enters the BUILD mode)
ENTER (Text Editor ’’ENTER” command)
* on %100 9.084 - off %100 9.140 on 06/24/75.
*cr (User exits the BUILD mode)

-FV;* (Position to the last line of the file and print)
......on 09.084 - off@9.140 on 06/24/75.

END OF FILE - REQUEST EXECUTED 1 TIMES

Caution: No tests are made to determine the validity of the octal
character.

t
NOCT nullifies the octal function.

Column Function

The function COLS:(xxx-yyy) allows the user to restrict string searches and
modifications in a horizontal direction; i.e., to a specific range of character
positions within one or all lines (depending on commands used). It is
particularly useful if data is in columnar (tabular) format. For example:

-COLS: (9-11) (User restricts the horizontal range to the
characters located within columns 9 through
11 (3 characters) inclusive/)

-P;2 (Print two lines)
12 3456 7 89012 34 56 7 89 012 3456 7890
abc def abc def abc def abc..

-RS:/abc/:/xyz/ (Replace the string abc with xyz)
(Print the current line)

abc def xyz def abc def abc...

NOTE: The string "abc” in columns 1, 2t and 3 was not affected since
column function was restricted to columns 9, 10 and 11. A.repeat
factor is acceptable. » > ^4* (

CP , 'vu.
Limitations 1. Character string must start in the first column specified

and terminate in the last column specified.
2. Multiple occurrences of strings within column parameters

are not permitted.
3. Multiple column parameters are not permitted.
4. Only numerics are permitted within parentheses; use of

characters other than numerics result in error messages.
NOCO nullifies the column function.

7/77 3-18.2 DD18B

■RHHH

mailto:off@9.140

MASK Function

The MASK function allows the user to manipulate a string without disturbing
the surrounding characters. For example:

-MASK # (User sets the "MASK” mode using the number
sign as the delimiter)

-P;2 (Print two lines)

DATANET355..
...... DATANET305 .

-B;l (Back the line pointer up one line)

IVS;/NET###/;2:/?/ (Insert and verify a question mark
following the string "NET” followed
by any three characters/ do it
twice)

.DATANET355?
DATANET305?

Limitation: The mask character is only acceptable in
the string to be worked on. It is
replacement field as a "mask" character.

the field containing
not acceptable in the

NOMA nullifies the mask function.

Occurrence Function
r

The use of the "0" operand allows the user to operate on a specific
occurrence of a string. The use of the additional repeat field (;n) specifies
which occurrence. For example:

Suppose a line contained the following repetitive data:

In the above example it would be extremely
difficult (if not impossible) to access the sixth occurrence
of the string "D" without replacing the entire line.
With the use of the "Occurrence" modifier/
replacement of the character would be performed as follows:

-RV0:/D/;6:/X/ (Replace and verify the sixth occur
rence of the character "D" with "X”)

7/77 3-18.3 DD18B

PRINT Command

The PRINT command is used when
entire file is to be printed. The
one of the following:

either a selected portion of a file or the
user can vary the PRINT command to print any

• The entire file
• Any number of consecutive lines

• Any number of lines containing a given character string or strings
e From one point to another

s A single line

The formats and execution are as follows:

Command

PRINT

PRINT;n
PRINT-j ;n

PRINT+j ;n

Execution

Print one line.

Print n consecutive lines.

Backup the line pointer lines and print n lines.

Move the line pointer forward lines and print n
lines.

PRINT;* Print entire file.

PRINT:/xxx/
PRINT:/xxx/;n

PRINT:/xxx/,/yyy/

Print line identified by xxx.
Print the next n lines identified by xxx. (* can
be used instead of n to print all such lines.)
Print the block of lines starting with the line
identified by xxx through the line identified by
yyy. (A repeat field can be used to print n or all
such lines.)

PRINTS:/yyy/ Print line containing specified string.

PRINTS:/yyy/;n Print n lines containing the specified string.
(* can be used to print all lines containing the
specified string.)

8/76 3-19 DD18A

prints:/yyy/,/zzz/

PRINT:/xxx/+/yyy/+...

PRINT:/xxx/-/yyy/~.. .

Print from line containing string yyy to line
containing string zzz, inclusive. (A repeat field
can be used with this form also.)

Print line containing all of the specified (a
maximum of five) strings. (A repeat field can be
used to print n or all such lines.)
Print line containing any one of the specified (a
maximum of five) strings. (A repeat field can be
used to print n or all such lines.)

To print the complete file, use the PRINT command in line mode with the
asterisk, in the repeat field. Printing begins at the location of the search
pointer and continues to the end of the file.

-PRINT;*
OPROGRAMMING LANGUAGES

HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARING
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES
CONTAIN MANY AMBIGUITIES AND REDUNDANCIES;
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY
LITERALLY. BY THE SAME TOKEN, MACHINE
LANGUAGES ARE ALSO IMPRACTICAL BECAUSE THEY ARE
DIFFICULT FOR PEOPLE TO USE. MOST PROGRAMMING
LANGUAGES ARE COMPROMISES BETWEEN HUMAN AND
MACHINE LANGUAGES.

>END OF FILE

To print a single line, use the PRINT command
a string field. If no string field is specified,
pointer is located is printed.

in line mode, with or without
the line where the search

-PRINT
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS

When a string field is specified, the line identified by the string is
printed. lhe string field must contain characters unigue to the beginning of
the line and only one string field can be used.

-BACKUP
-PRINT:/HUMAN/
HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARING

To print any number of consecutive lines, use PRINT in the line mode with a
repeat field. Printing begins at the location of the search pointer.

3—0 DD13B

-BACKUP
-PRINT;3

OCOMPUTER PROGRAMS
[>A COMPUTER PROGRAM IS A SET OF INSTRUCTION THAT

Line space inserted during build

To
without

with orprint a specified string, use PRINTS with a string field and

-PRINTS:/SHAR/
TIME-SHARING SYSTEM
-PRINTS:/SHAR/;4
TIME-SHARING SYSTEM
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY
THUS, TIME-SHARING PERMITS A USER TO WORK
MANY OTHERS AT THE SAME TIME SHARE THIS

To print from point-to-point, use PRINTS and two string fields.

-PRINTS:/TIME/,/USE./
OTIME-SHARING PERMITS A DIALOGUE BETWEEN THE

COMPUTER AND USER, PERMITTING THE DIALOGUE
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS.
DATA IS FED FROM THE TERMINAL DIRECTLY TO
THE COMPUTER AND ANSWERS ARE RECEIVED
QUICKLY AT THE SAME TERMINAL.

IF THE PROGRAM CONTAINS A MISTAKE, THE
COMPUTER INFORMS THE USER.
THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE

OOF TERMINAL IN USE.

The first string
and the second string
above example, if the
only the two lines of
have been printed.

*
field must contain data unique to the first line printed
field must be unique to the last line printed. In the
second string field did not contain the period after USE,
text, through the line containing the word USER, would

Two special forms of the operand are permissible with the PRINT command to
identify lines containing specified strings. These forms of the operand are
referred to as Boolean AND and OR functions. The operand can consist of up to
five separate strings connected by plus signs for the AND form and minus signs
for the OR form. The strings can be in any order; i.e., the fifth string in
order of appearance in the line may be listed first in the operand.

DD18

I*or the AND form, the user lists strings and plus signs to imply that
form is a Boolean AND—all of the strings listed must be present to achieve
print. For example, with d representing a delimiter the format is

the
the

PRINT:dSTRINGldt....+dSTRING5d

or the OR form, the user lists strings and minus signs to imply that the
orm is a Boolean OR—any one of the listed strings need be present to achieve

~ i^inL.. For example, with d representing a delimiter, the format is
PRINT:dSTRINGld-...-dSTRING5d

Note that these two special forms of the operand are equivalent in line or
string mode.

-PRINT;*
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
TASK. EACH INSTRUCTION IS PERFORMED IN THE
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY,
THE COMPUTER PROCESSES AND PRODUCES INFORMATION
AS DIRECTED BY THE PROGRAM.

A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS
EXECUTED) ON A COMPUTER.

THE PROGRAM MUST BE SUBMITTED TO THE
COMPUTER IN A LANGUAGE THAT THE
COMPUTER RECOGNIZES.

ALL LANGUAGE INSTRUCTIONS MUST BE
COMPLETE AND BE PRECISELY STATED.

END OF FILE
BACKUP

-PRINT:/COMPUTER/+/PRODUCES/
THE COMPUTER PROCESSES AND PRODUCES INFORMATION
-BACKUP
-FIND:/TWO/-/PRIMARY/-/REQUIREMENTS/
-PRINT
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS

FIND Command

The FIND command moves the search pointer through the
used with or without an operand field. file. FIND may be

I- in doubt as to where the search pointer is located, give the PRINT
command .vitn no operand field. The resulting printout is the line pointed to by
the search pointer. It is advisable, when editing a file in which the specified
string may appear more than once, to print the line before changing the file, in
order to ensure that the change is made in the right place.

DD18

The repeat field can be used with a string field in the FIND command. The
search and comparison continues until the comparison is made as many times as
indicated. When execution is completed, the response appears. If the repeat
field is used without a string field, the search pointer moves forward n number
of lines as indicated by the repeat field.

The formats and execution are as follows:

Command
FIND
FIND;n
FIND:/xxx/

FIND:/xxx/;n
FINDS:/yyy/
FINDS:/yyy/;n

FIND:/xxx/+/yyy/+...

FIND:/xxx/-/yyy/-...

Execution
Advance search pointer one line.

Advance search pointer n lines.
Find line identified by xxx.
Find nth line identified by xxx.
Find line containing specified string.
Find the line containing the nth occurrence of the
specified string.
Find line containing ail of the specified strings.
(A repeat field can be used to find n or all such
lines.)
Find line containing one of the specified strings.
(A repeat field can be used to find n or all such
lines.)

To find a specified string, not at the beginning of the line, use FIND
the string mode.

in

-FINDS:/MUST/
-PRINT

THE PROGRAM MUST BE SUBMITTED TO THE
-BACKUP;4
-PRINT;*
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS
EXECUTED) ON A COMPUTER.

THE PROGRAM MUST BE SUBMITTED TO THE
COMPUTER IN A LANGUAGE THAT THE
COMPUTER RECOGNIZES.

END OF FILE

To find a string past the point where it next occurs, use FIND in the
string mode with a repeat field.

23 DD18

-PRINT;6
COMPUTER PROGRAMS
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
TASK. EACH INSTRUCTION IS PERFORMED IN THE
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY
-B
-FINDS:/IS/;3
-PRINT
TASK. EACH INSTRUCTION IS PERFORMED IN THE

To find a specified number of lines, use FIND in line mode with a repeat
field. The number in the repeat field includes the line at which the search
pointer is located at the beginning of execution (unless FIND is used without a
string field, in which case line 1 is the line following).

-PRINT;4
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY
WHICH PROGRAMS ARE HANDLED IN PARALLEL. A
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF
THESE PROGRAMS, CONTROLLING “STOP” AND "GO”
-FIND;1
-PRINT
SIGNALS TO INPUTS FROM TERMINALS AND

Two special forms of the operand are permissible with the FIND command to
identify lines containing specified strings. These forms of the command are
referred to as the Boolean AND and OR functions. The operand can consist of up
to five strings connected by plus signs for the AND form and minus signs for the
OR form. The strings can be in any order; i.e., the fifth string in order of
appearance in the line can be listed first in the operand. *■

For the AND form, the user lists strings and plus signs to imply that the
form is a Boolean AND--all of the strings listed must be present to achieve the
find. For example, with d representing a delimiter, the format is

FIND:dSTRINGld+....+dSTRING5d

For the OR form, the user lists strings and minus signs to imply that the
form is a Boolean OR--any one of the listed strings need be present to achieve
the find. For example, with d representing a delimiter, the format is

FIND:dSTRINGld-...-dSTRING5d

Note that these two special forms of the operand are equivalent in line or
string mode.

Examples of the use of these forms of the operand are given with the
description of the PRINT command above.

DD18

-r-•

REPLACE Command

The REPLACE command allows the user to replace any number of characters,
words, or lines of text with new text of any length. REPLACE may or may not have
an operand field. If no operand field is given, the line where the search
pointer is located is replaced.

The operand field can take one of two forms, depending on the length of the
replacement text. The first four formats illustrate the format to be used when
the operand field cannot be contained in one line. The remaining three formats
illustrate the use of REPLACE with short strings.

The formats and execution are as follows:

Command
REPLACE

REPLACE:/xxx/

REPLACE:/xxx/;n

REPLACE:/xxx/,/yyy/

REPLACES:/yyy/
REPLACES:/yyy/;n

REPLACES:/yyy/,/zzz/

REPLACE:/st1/+.../stn/

REPLACE:/st1/-.../stn/

Execution
Replace line at which search pointer is currently
located. (A repeat field can be used with this
form.)

Replace line identified by xxx.

Replace the next n lines identified by xxx. (* can
be used instead of n to replace all such~Tines.)

Replace the block of lines starting with the line
identified by xxx through the line identified by
nx-
Replace specified string.
Replace n successive occurrences of the specified
string. (* can be used instead of n to replace all
such occurrences'.)

Replace text between points yyy
inclusive. (A repeat field can be used
form also.)

and z z z,
with tars

Replace line containing all of the specified (a
maximum of five) strings. (A repeat field can be
used to replace n or all such lines.)
Replace line containing any one of the specified
(a maximum of five) strings. (A repeat field can
be used to replace n or all such lines.)

Following the REPLACE commands above, the system responds with ENTER.* The
replacement text is then typed in. Following the ENTER response, the replacement
text must include all desired blanks and carriage returns. Replacement text is
typed on lines following ENTER. When text entry is complete, a carriage return
in response to the asterisk generates the - response.

3-25 DD18

In string mode, the carriage return on the last line of text is ignored.
When replacing short strings of text, the formats shown below can be used.

NOTE: The command and the entire operand field must be on the same line.
This format does not accept a carriage return before the final
delimiter. The ENTER response is not given with this use of the
command.

Command Execution

REPLACE:/xxx/:/bbb/ Replace line identified by xxx
(line) bbb. with the string

REPLACE:/xxx/;n:/bbb/

.* / u 7 z J / b

REPLACES:/yyy/;n:/bbb/

Replace the next n 1ines identified by xxx with
the string (line) bbb. (* can be used instead of n
to replace ail such lines.)

Replace n successive occurrences of the string yyy
with string bbb. (* can be used instead of n to
replace all such occurrences.)

REPLACES:/yyy/,/zzz/:/bbb/
Replace text between points yyy and zzz,
inclusive, with string bbb. (A repeat field can Toe
used with this form also.7

iO replace a string of characters, use REPLACE in the string mode with a
string field and with or without a repeat field. Replacement begins at the first
character position specified in the operand string field. If a repeat field is
specified, n identical replacements are performed (unless end-of-filc is
encountered first).

-PRINT '
A PROGRAM MUST MEET TWO PRIMERY REQUIREMENTS
-REPLACES:/ERY/:/ARY/
-PRINT
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS

iC replace a complete line, use REPLACE in the line mode, with or without a
string field and/or repeat field. The string field, when used, must contain the
characters unique to the beginning of the line. When no string or repeat field
is given, the line where the search pointer is locate^ is replaced.

Example 1
-PRINT
TIME-SHARING LANGUAGES
-REPLACE:/TI/:/TIME-SHARING SYSTEM/
-PRINT
TIME-SHARING SYSTEM

3-26 DD18

Example 2
-PRINT
TIME-SHARING LANGUAGES
-REPLACE
ENTER
*TIME-SHARING SYSTEM
* (carriage return)
-PRINT
TIME-SHARING SYSTEM

When the repeat field is used, the lines beginning with the specified
string are replaced the indicated number of times. If no string field is given,
the indicated number of lines is replaced.

-PRINT;14
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY
WHICH PROGRAMS ARE HANDLED IN PARALLEL. A
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF
THESE PROGRAMS, CONTROLLING "STOP" AND "GO"
SIGNALS TO INPUTS FROM TERMINALS AND
PREVENTING DEMANDS OF ONE TERMINAL FROM
INTERFERING WITH DEMANDS OF OTHER TERMINALS.
THUS, TIME-SHARING PERMITS A USER TO WORK
DIRECTLY WITH THE COMPUTER, WHETHER IT IS
WITHIN HIS SIGHT OR THOUSANDS OF MILES
AWAY. THE USER BELIEVES THAT HE HAS
EXCLUSIVE USE OF THE COMPUTER, EVEN THOUGH
MANY OTHERS AT THE SAME TIME SHARE THIS
ILLUSION.
-BACKUP;13
-REPLACE;2
ENTER
*A TIME-SHARING SYSTEM
* (carriage return)
-PRINT;5
A TIME-SHARING SYSTEM
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF
THESE PROGRAMS, CONTROLLING "STOP" AND "GO"
SIGNALS TO INPUTS FROM TERMINALS AND
PREVENTING DEMANDS OF ONE TERMINAL FROM

To replace from point-to-pornt, use REPLACE in the string mode with two
string fields. A repeat field can be used if desired.

-PRINT;*
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE
COMPUTER AND USER, PERMITTING THE DIALOGUE
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS.
DATA IS FED FROM THE TERMINAL DIRECTLY TO
THE COMPUTER AND ANSWERS ARE RECEIVED
QUICKLY AT THE SAME TERMINAL.

DD18

THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE OF
TERMINAL IN USE.

END OF FILE
B; 13
-REPLACES:/SAME/,/THE/
ENTER
♦SAME TERMINAL.
* (blank,carriage return)
♦IF THE PROGRAM CONTAINS A MISTAKE, THE
♦COMPUTER INFORMS THE USER.
*(blank,carriage return)
*THE
* (carriage return)
-B?ll
-PRINT;*
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE
COMPUTER AND USER PERMITTING THE DIALOGUE
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS.
DATA IS FED FROM THE TERMINAL DIRECTLY TO
THE COMPUTER AND ANSWERS ARE RECEIVED
QUICKLY AT THE SAME TERMINAL.
IF THE PROGRAM CONTAINS A MISTAKE, THE
COMPUTER INFORMS THE USER.

THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE
OF TERMINAL IN USE.
END OF FILE

Two special forms of the operand are permissible with the REPLACE command
to identify lines containing specified strings. These forms of the command are
referred to as the Boolean AND and OR functions. The operand can consist of up
to five strings connected by plus signs for the AND form and minus signs for the
OR form. The strings can be in any order; i.e., the fifth string in order of
appearance in the line can be listed first in the operand.

For the AND form, the user lists strings and plus signs to imply that the
form is a Boolean AND--all of the strings listed must be present to achieve the
replace. For example, with d representing a delimiter, the format is

REPLACE:dSTRINGld+...+dSTRING5d

For the OR form, the user lists strings and minus signs to imply that the
form is a Boolean OR--any one of the listed strings need be present to achieve
the replace. For example, with d representing a delimiter, the format is

REPLACE:dSTRINGId-...-dSTRING5d

Note that these two special forms of the operand are equivalent in line or
string mode.

3 DD18

DELETE Command

The DELETE command allows the user to delete any number of characters,
words, or lines from his file. The operand field of the command specifies the
text to be deleted. If no operand field is given, the line where the search
pointer is located is deleted.

The formats and execution are as follows:

Command
DELETE or DELETE;n

DELETE:/xxx/
DELETE:/xxx/;n

DELETE:/xxx/,/yyy/

DELETES:/yyy/
DELETES:/yyy/;n

DELETES:/yyy/,/zzz/

DELETE:/stl/+.../stn/

Execution
Delete line or lines at which search pointer is
currently located.

Delete line identified by xxx.
Delete the next n lines identified by xxx. (* can
be used instead of n to delete all such lines.)
Delete the block of lines starting with the line
identified by xxx through the line identified by
yyy. (A repeat field can be used to delete n or
all such lines.)

Delete specified string.
Delete n occurrences of specified string. (* can
be usccT instead of n to delete all such
occurrences.)
Delete text between points yyy and zzz, inclusive.
(A repeat field can be used with this-"form also.)

Delete line containing all of the specified (a
maximum of five) strings. (A repeat field can be
used to delete n or all such lines.)

DELETE:/stl/-.../stn/ Delete line containing any one of the specified (a
maximum of five) strings. (A repeat field can be
used to delete n or all such lines.)

To delete a string of characters, use DELETE in the string mode with or
without a repeat field.

-PRINT
(HAVE ALL INSTRUCTIONS EXECUTED 0) ON A COMPUTER.
“DELETES:/ 0/
“PRINT
(HAVE ALL INSTRUCTIONS EXECUTED) ON A COMPUTER.

3-29 DD18

■ xo delete from point-to-point, use delete in the string mode with two
string fields and with or without a repeat field. All data between and including
the two points indicated is deleted.

-PRINT;4
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES
CONTAIN MANY AMBIGUITIES AND REDUNDANCIES;
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY
LITERALLY. BY THE SAME TOKEN, MACHINE
-B
-DS:/THE C/,/. /
-B
-P;4
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES
CONTAIN MANY AMBIGUITIES AND REDUNDANCIES;
BY THE SAME TOKEN, MACHINE
LANGUAGES ARE ALSO IMPRACTICAL BECAUSE THEY ARE

o delete one or more lines, use DELETE in line mode, with or without a
s ring leld and/or repeat field. If both a string field and repeat field are
used, the indicated number of lines beginning with the specified string are
deleted. If no string field is used with the repeat field, the indicated number
of lines is deleted, beginning at the location of the search pointer.

-PRINT;4
HUMAN LANGUAGES ARE IMPRACTICAL FOR PREPARING
COMPUTER PROGRAMS BECAUSE THESE LANGUAGES
CONTAIN MANY AMBIGUITIES AND REDUNDANCIES;
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY
-B; 3
-D;3
-PRINT;2
THE COMPUTER INTERPRETS LANGUAGE ABSOLUTELY
LITERALLY. BY THE SAME TOKEN, MACHINE

common beginning, use DELETE in line mode with
Note that in the following example the sentence "ALL LANGUAGE

is not deleted because the letter A is preceded by blanks.

To delete all lines having a
a repeat field, r
INSTRUCTION MUST BE"

-PRINT;*

COMPUTER PROGRAMS

A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT
TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
TASK. EACH INSTRUCTION IS PERFORMED IN THE
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY,
THE COMPUTER PROCESSES AND PRODUCES INFORMATION
AS DIRECTED BY THE PROGRAM.

A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS
EXECUTED) ON A COMPUTER.

THE PROGRAM MUST BE SUBMITTED TO THE
COMPUTER IN A LANGUAGE THAT THE
COMPUTER RECOGNIZES.

ALL LANGUAGE INSTRUCTION MUST BE
COMPLETE AND BE PRECISELY STATED.

3--”0 DD13

END OF FILE
B
-DELETE:/A/;*

END OF FILE - REQUEST EXECUTED 3 TIMES
B
-PRINT;*

COMPUTER PROGRAMS

TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
TASK. EACH INSTRUCTION IS PERFORMED IN THE
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY,
THE COMPUTER PROCESSES AND PRODUCES INFORMATION
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS
EXECUTED) ON A COMPUTER.

THE PROGRAM MUST BE SUBMITTED TO THE
COMPUTER IN A LANGUAGE THAT THE
COMPUTER RECOGNIZES.
ALL LANGUAGE INSTRUCTION MUST BE
COMPLETE AND BE PRECISELY STATED.

END OF FILE

Two special forms of the operand are permissible with the DELETE command to
identify lines containing specified strings. These forms of the command are
referred to as "ANDing" and "ORing". The operand can consist of up to five
strings connected by plus signs for the AND form and minus signs for the OR
form. The strings can be in any order; i.e., the fifth string in order of
appearance in the line may be listed first in the operand.

*
For the AND form, the user lists strings ’and plus signs to imply that the

form is a Boolean AND~~all of the strings listed must be present to achieve the
delete. For example, with d representing a delimiter, the. format is

DELETE:dSTRINGld+ +dSTRING5d

For the OR form, the user lists strings and minus signs to imply that the
form is a Boolean OR—-any one of the listed strings need be present to achieve
the delete. For example, with d representing a delimiter, the format is

DELETE:dSTRINGld-...-dSTRING5d

Note that these two special forms of the operand are equivalent in line or
string mode.

3-?l DD18

INSERT Command

rhe INSERT command allows the user to insert any number of characters,
words, or lines into his file. The operand field of the INSERT command specifies
the point after which the insertion is to be made and can take one of two forms,
depending on the length of the text being inserted.

The first list below illustrates the format to be used when the operand
field cannot be contained on one line. The system responds to the INSERT command
with the word ENTER. The text to be inserted is then typed on lines following
ENTER. When text entry is complete, a carriage return following the asterisk
generates the response. The second list illustrates the use of INSERT with
short strings; the ENTER response is not given in this use of the command.

The formats and execution are as follows:

Command
INSERT

INSERT:/xxx/
INSERT:/xxx/;n

INSERTS:/yyy/

INSERTS:/yyy/;n

INSERTS:/yyy/,/zzz/

INSERT:/stl/+.../stn/

INSERT:/st1/- /s tn/

Execution

Insert after the line at which the search pointer
is currently located.

Insert after the line identified by xxx.
Insert after each of the next n lines identified
by can used instead of n to insert
after all such lines.) ~
Insert after point yyy.

Insert after each of n successive occurrences of
point (* can be used instead of n to insert
after all such occurrences.)

Insert after poiht zzz. (A repeat field can be
used with this form.)

Insert after line containing all of the specified
(a maximum of five) strings. (A repeat field can
be used to insert after n or all such lines.)
Insert after line containing any one of the
specified (a maximum of five) strings. (A repeat
field can be used to insert after n or all such
lines.) ~

When inserting short strings of text, the following formats can be used.

NOTE: The command and the entire operand field must be on the same line.
This format does not accept a carriage return before the final
delimiter.

DD18

Command
INSERT:/xxx/:/bbb/

INSERT:/xxx/;n:/bbb/

INSERTS:/yyy/:/bbb/

INSERTS:/yyy/;n:/bbb/

Execution
Insert string bbb after the line identified by
xxx.

Insert string bbb after each of the next n lines
identified by xxx. (* can be used instead of n to
insert after all such lines.)

Insert string bbb after point yyy.

Insert string
occurrences of
of n to insert

bbb after each of n successive
point yyy. (* can be used instead
after all such occurrences.)

INSERTS:/yyy/,/zzz/:/bbb/ Insert string bbb following point zzz. (A repeat
field can be used with this form.)

To insert one or more lines, use INSERT in the line mode with or without a
string field and/or repeat field. If no string field is used, the insertion is
made after the line where the search pointer is located. For insertions of more
than one line, each new line must be followed by a carriage return to prevent it
from running into the next line.

-PRINT;6
QUICKLY AT THE SAME TERMINAL.
THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE
OF TERMINAL IN USE.
-B; 5
-INSERT
ENTER
*IF THE PROGRAM CONTAINS A MISTAKE, THE
COMPUTER INFORMS THE USER.
*(carriage return)
-B;3
-PRINT;*
QUICKLY AT THE SAME TERMINAL.
IF THE PROGRAM CONTAINS A MISTAKE, THE
COMPUTER INFORMS THE USER.
THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT.UPON THE TYPE
OF TERMINAL IN USE.
END OF FILE

To insert a string of characters, use INSERT in the string mode with a
string field and with or without a repeat field. The string field must identify
the point after which the insertion is to be made.

-PRINT;4
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY
WHICH PROGRAMS ARE HANDLED IN PARALLEL.
THUS, TIME-SHARING PERMITS A USER TO WORK
DIRECTLY WITH THE COMPUTER, WHETHER IT IS

-I -----.. --- --------- - -------

DD18

-INSERTS:/LEL./
ENTER
♦SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF
♦THESE PROGRAMS, CONTROLLING "STOP" AND "GO"
♦SIGNALS TO INPUTS FROM TERMINALS AND
♦PREVENTING DEMANDS OF ONE TERMINAL FROM
♦INTERFERING WITH DEMANDS OF OTHER TERMINALS.
*(carriage return)
-B
-PRINT;9
THE TIME-SHARING SYSTEM USES A TECHNIQUE BY
WHICH PROGRAMS ARE HANDLED IN PARALLEL. A
SUPERVISORY PROGRAM ACTS AS A CONTROLLER OF
THESE PROGRAMS, CONTROLLING "STOP" AND "GO"
SIGNALS TO INPUTS FROM TERMINALS AND
PREVENTING DEMANDS OF ONE TERMINAL FROM
INTERFERING WITH DEMANDS OF OTHER TERMINALS.
THUS TIME-SHARING PERMITS A USER TO WORK
DIRECTLY WITH THE COMPUTER, WHETHER IT IS
-Ft/THE PROGRAM/
-PRINT
THE PROGRAM BE CORRECTED OR CHANGED BY
-INSERTS:/RAM /:/CAN /
-P
THE* PROGRAM CAN BE CORRECTED OR CHANGED BY

To insert at the beginning of the file, use INSERTS in the line mode with
no operand field.

-PRINT;3
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS
EXECUTED) ON A COMPUTER.
-B
-INSERTS
ENTER
♦COMPUTER PROGRAMS
*(blank,carriage return)
♦A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT
♦TELLS A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
♦TASK. EACH INSTRUCTION IS PERFORMED IN THE
♦SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY,
♦THE COMPUTER PROCESSES AND PRODUCES INFORMATION
♦AS DIRECTED BY THE PROGRAM.
*(carriage return)
-B
-PRINT;11

8/76 3-34 DD18A

COMPUTER PROGRAMS
A COMPUTER PROGRAM IS A SET OF INSTRUCTIONS THAT
TELL A COMPUTER HOW TO ACCOMPLISH A SPECIFIC
TASK. EACH INSTRUCTION IS PERFORMED IN THE
SEQUENCE SPECIFIED BY THE PROGRAM. IN THIS WAY,
THE COMPUTER PROCESSES AND PRODUCES INFORMATION
AS DIRECTED BY THE PROGRAM.
A PROGRAM MUST MEET TWO PRIMARY REQUIREMENTS
BEFORE IT CAN BE RUN (HAVE ALL INSTRUCTIONS
EXECUTED) ON A COMPUTER.

The INSERT command, in conjunction with the #TAPE command, allows the user
to insert text from paper tape in the file at any point in the file. At the
selected point (as determined by the operand of the INSERT command), the user
activates the paper tape reader to read in the tape after the appearance of the
ENTER response. Upon termination of tape read, the user gives a carriage return
in response to the asterisk and the - response appears.

-INSERT
ENTER
*#TAPE
READY

(appropriate operand) %

(user activates paper tape reader and
text is read in from tape.)

*(carriage return)

Text may be alternatively inserted from the keyboard and from paper tape.

-INSERT (appropriate operand)
ENTER
*Text entered by user r
*more text
*last line of text
*#TAPE
READY
(user activates paper tape reader and text
is read in from tape.)
*Text entered by user
*more text
*last line of text
*(carriage return)

The INSERT command, as indicated in the descriptions of the command above,
provides for insertion of data following the specified line or string. An
optional operand, the letter B, can be used with the INSERT command to achieve
insertion before the specified line or string.

-STRING
-F
-P
THE PROGRAM CAN BE CORRECTED OR CHANGED BY
-INSERTB:/THE/:/THEREFORE, /
-P
THEREFORE, THE PROGRAM CAN BE CORRECTED OR CHANGED BY

3-35 DD18

Two special forms of the operand are permissible with the INSERT command to
identify lines containing specified strings. These forms of the operand are
referred to as the Boolean AND and OR functions. The operand can consist of up
to five separate strings connected by plus signs for the AND form and minus
signs for the OR form. The strings can be in any order; i.e., the fifth string
in order of appearance in the line may be listed first in the operand.

I

For the AND form, the user lists strings and plus signs to imply that the
form is a Boolean AND—-all of the strings listed must be present to^ achieve the
insert. For example, with d representing a delimiter the format is

INSERT:dSTRINGld+....+dSTRING5d

Fox the OK form, the user lists strings and minus signs to imply that the
form is a Boolean OR—any one of the listed strings need be present to achieve
the insert. lor example, with d representing a delimiter, the format is

INSERT:dSTRINGld- .-dSTRING5d

Note that these two special forms of the operand are equivalent in line or
string mode.

COPY Command

The COPY command allows the user to copy a specified portion of text and
hold it in reserve for a PASTE command. The copied text is not removed from the
file but is repeated at the location specified by PASTE. Several sequential
COPY commands can be given and the collected text inserted with a single PASTE
command. Examples of the use of COPY are included with the PASTE examples.

The format and execution are as follows:

Command
COPY

COPY:/xxx/

COPY:/xxx/;n

COPY:/xxx/,/yyy/

COPYS:/yyy/
COPYS:/yyy/;n

COPYS:/yyy/,/zzz/

COPY:/stl/+.../stn/

Execution

Copy the line at which the search pointer is
currently located. (A repeat field can be used
with this form.)

Copy line identified by xxx.

Copy the next n lines identified by xxx. (* can
bemused to copy all such lines.)

Copy the block of lines starting with the line
identified by xxx ~through the line identified by
7.Y.Z* repeat field can be used to copy n or all
such blocks of lines.) ~

Copy the line that contains the specified string.
Copy n occurrences of the line that contains the
specified string. (* can be used to copy all such
lines.)

Copy text between points
(A repeat field can be and zzz, inclusive,

with this form also.)
Copy line containing all of the specified (a
maximum of five) strings. (A repeat field can be
used to copy n or all such lines.)

8/76 3-36 DD18A

COPY:/stl/-.../stn/ Copy line containing any one of the specified (a
maximum of five) strings. (A repeat field can be
used to copy n or all such lines.)

Two special forms of the operand are permissible with the COPY command to
identify lines containing specified strings. These forms of the command are
referred to as the Boolean AND and OR functions. The operand can consist of up
to five strings connected by plus signs for the AND form and minus signs for the
OR form. The strings can be in any order; i.e., the fifth string in order of
appearance in the line may be listed first in the operand.

For the. AND form, user lists strings and plus signs to imply that the form
is a Boolean AND--all. of the strings listed must be present to achieve the copy.
For example, with d representing a delimiter, the format is

COPY:dSTRINGld+....+dSTRING5d

For the OR form, the user lists strings and minus signs to imply that the
form is a Boolean OR--any one of the listed strings need be present to achieve
the copy. For example, with d representing a delimiter, the format is

COPY:dSTRINGld-...-dSTRING5d

Note that these two special forms of the operand are equivalent in line or
string mode.

CUT Command

The CUT command performs the same functions as COPY, except the copied text
is deleted from its present location. Examples of this are included with the
PASTE examples. The formats and execution are as follows.

ExecutionCommand
CUT Copy and remove the line at which the search

pointer is located. (A repeat field can be used
with this form.)

CUT:/xxx/ Copy and remove the line identified by xxx.
CUT:/xxx/;n Copy and remove the next n lines identified by

xxx. (* can be used to copy and remove all such
lines .)

CUT:/xxx/,/yyy/ Copy and remove the block of lines starting with
the line identified by xxx through the line
identified by yyy. (A repeat field can be used to
copy and remove n or all such blocks of lines.)

CUTS:/yyy/ Copy and remove the line that contains the
specified string.

cuts:/yyy/;n Copy and remove n occurrences of the line that
contains the specified string. (* can be used to
copy and remove all such lines.)

CUTS:/yyy/,/zzz/ Copy and remove text between points yyy and zzz,
inclusive. (A repeat field can be used to copy and
remove n or all such occurrences of text.)

8/76 3-37 DD18A

CUT:/s tl/+.../stn/

CUT:/stl/- ../s tn/

Copy and
specified
field can
lines.)

remove line containing all of the
(a maximum of five) strings. (A repeat
be used to copy and remove n or all such

Copy and remove line or lines containing any one
of the specified (a maximum of five) strings. (A
repeat field can be used to copy and remove n or
all such lines.)

Two special forms of the operand are permissible with the CUT command
identify lines containing specified strings. These forms of the command
referred to as the Boolean AND and OR functions. The operand can consist of
to five strings connected by plus signs for the AND form and minus signs for

1 strings can be in any order; i,e.z the fifth string in order
appearance in the line may be listed first in the operand.

to
are
up

the
of

For the AND form, the user lists strings and plus signs to imply that the
form is a Boolean AND—all of the strings listed must be present to achieve the
cut. tor example, with d representing a delimiter, the format is

CUT:dSTRINGld+...,+dSTRING5d

F°r g-’ form, the user lists strings and minus signs to imply that the
the ent OR—any one of the listed strings need be present to achieve
the cut. For example, with d representing a delimiter, the format is

CUTzdSTRINGld-...-dSTRING5d

string°modehat theSe two sPecial forms of the operand are equivalent in line or

PASTE Command

The PASTE command inserts the collected CUT or COPY text into the specified
location. In order to PASTE the copied text in more than one location,
successive PASTE instructions must be used. Once a PASTE command has been
executed, the next COPY or CUT command wipes out the previously accumulated COPY
or CUT text.

Command
PASTE

PASTE:/xxx/
PASTE:/xxx/;n

PASTES:/yyy/

PASTES:/yyy/?n

Execution

Insert text after the line at which the search
pointer is currently located.

Insert text after the line identified by xxx.
Insert text after each of the next n lines
identified by xxx. (* can be used to insert after
all such lines.)

Insert text after point yyy

Insert text after each of n successive occurrences
of point yyy. (* can be used to insert after all
such occurrences.)

3-38 DD18

PASTE:/st1/+.../stn/ Insert text after all specified
five) strings. (A repeat field ca
insert text after line containing n
lines.)

(a maximum
can be used
n or all

of
to

such

PASTE:/stl/-.../stn/ Insert text after line containing any one
specified (a maximum of five) strings. (
field can be used to insert text after n
such lines.) ~

e of the
(A repeat
n or all

To cut and paste one or more lines, use CUT in the line mode, with or
without a string field and/or repeat field. If both a string field and repeat
field are used, the indicated number of lines beginning with the specified
string is copied, removed, and then inserted by PASTE. If no string field is
used with the repeat field, the indicated number of lines is copied and removed,
beginning at the location of the search pointer.

-PRINT;*
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE
COMPUTER AND USER, PERMITTING THE DIALOGUE
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS.
DATA IS FED FROM THE TERMINAL DIRECTLY TO
THE COMPUTER AND ANSWERS ARE RECEIVED
QUICKLY AT THE SAME TERMINAL.

IF THE PROGRAM CONTAINS A Ml 'TAKE, THE
COMPUTER INFORMS THE USER.
THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE
OF TERMINAL IN USE.
END OF FILE
B
-FIND:/QUICKLY/
-FIND.-l
-CUT;3
-PASTE:/OF/
-B
-PRINT;*
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE
COMPUTER AND USER, PERMITTING THE DIALOGUE
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS.
DATA IS FED FROM THE TERMINAL DIRECTLY TO
THE COMPUTER AND ANSWERS ARE RECEIVED
QUICKLY AT THE SAME TERMINAL.

3-39 DD18

THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE
OF TERMINAL IN USE.
IF THE PROGRAM CONTAINS A MISTAKE, THE
COMPUTER INFORMS THE USER.
END OF FILE.

To paste the same text in several locations, use CUT or COPY, then
successive PASTE commands, one for each insertion needed. The example
illustrates a form letter and mailing list contained in the same file. In this
case, a continuous PASTE command is used, since each insertion is made following
a line beginning with the same word.

-PRINT;*

WE TAKE GREAT PLEASURE IN ANNOUNCING

YOURS VERY TRULY,
COMPANY NAME
ADDRESS
CITY,STATE
MR. A. A. ADAMS
ADDRESS
CITY,STATE
DEAR MR. ADAMS:

•
MR. X. Y. ZILCH
ADDRESS
CITY,STATE

DEAR MR. ZILCH:

END OF FILE
B
-COPY:/ /,/CITY/

(The space character between the first set
blank line at the beginning of the file to
text.)

of delimiters causes the
be included with the copied

DD18

-PASTE:/DEAR/;*

END OF FILE - REQUEST EXECUTED 2 TIMES
B
-FIND:/MR./
-PRINT;*
MR. A. A. ADAMS
ADDRESS
CITY,STATE
DEAR MR. ADAMS:

WE TAKE GREAT PLEASURE IN ANNOUNCING

YOURS VERY TRULY,
COMPANY NAME
ADDRESS
CITY,STATE

•

DEAR MR. ZILCH:

WE TAKE GREAT PLEASURE IN ANNOUNCING

YOURS VERY TRULY,

COMPANY NAME
ADDRESS
CITY,STATE
END OF FILE

Two special forms of the operand are permissible with the PASTE command to
identify lines containing specified strings. These forms of the command are
referred to as the Boolean AND and OR functions. The operand can consist of up
to five strings connected by plus signs for the AND form and minus signs for the
OR form. The strings can be in any order; i.e., the fifth string in order of
appearance in the line may be listed first in the operand.

For the AND form, the user lists strings and plus signs to imply that the
form is a Boolean AND--all of the strings listed must be present to achieve the
paste. For example, with d representing a delimiter, the format is

PASTE:dSTRINGld+....+dSTRING5d

3-41 DD18

For the OR form, the user Lists strings and minus signs to imply that the
form is a Boolean OR--any one of the listed strings need be present to achieve
the paste. For example, with d representing a delimiter, the format is

PASTE:dSTRINGld-...-dSTRING5d

Noto that these two special forms of the operand are equivalent in line or
string mode.

BUILD Command

The BUILD
file. When the
search pointer

command enables the user to append t
user gives the BUILD command, the k
to the end of the file and respunub with

subsystem
ENTER.

to his text
positions the

The text
text entry is
generates the

to be entered is typed on lines following che ENTER
complete, a carriage return only in response to
- response.

response. When
the asv .risk

The text entered following
the carriage return is given to
given and the search pointer is

the ENTER response is appended to the file. When
signal the end of text entry, the - response is
returned to the beginning of the file.

-PRINT;*
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE
COMPUTER AND USER, PERMITTING THE DIALOGUE
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR
THE COMPUTER TO COMPLETE PREVIOUS’PROGRAMS.
DATA IS FED FROM THE TERMINAL DIRECTLY TO
THE COMPUTER AND ANSWERS ARE RECEIVED
QUICKLY AT THE SAME TERMINAL.
END OF FILE
BUILD
ENTER
♦THE PROGRAM CAN BE CORRECTED OR CHANGED BY
♦THE USER AS IF HE WERE CONVERSING BY PHONE.
♦EXCEPT IN THIS CASE, THE CONVERSATION IS
♦TYPED OR DISPLAYED, DEPENDENT UPON THE TYF._,
♦OF TERMINAL IN USE.
* (blank,carriage return)
♦IF THE PROGRAM CONTAINS A MISTAKE, THE
♦COMPUTER INFORMS THE USER.
*(carriage return)
-PRTNT;*
TIME-SHARING PERMITS A DIALOGUE BETWEEN THE
COMPUTER AND USER, PERMITTING THE DIALOGUE
TO BEGIN IMMEDIATELY, WITHOUT WAITING FOR
THE COMPUTER TO COMPLETE PREVIOUS PROGRAMS.
DATA IS FED FROM THE TERMINAL DIRECTLY TO
THE COMPUTER AND ANSWERS ARE RECEIVED
QUICKLY AT THE SAME TERMINAL.
THE PROGRAM CAN BE CORRECTED OR CHANGED BY
THE USER AS IF HE WERE CONVERSING BY PHONE,
EXCEPT IN THIS CASE, THE CONVERSATION IS
TYPED OR DISPLAYED, DEPENDENT UPON THE TYPE
OF TERMINAL IN USE.

3-42 DD18

IF THE PROGRAM CONTAINS A MISTAKE, THE
COMPUTER INFORMS THE USER.

END OF FILE

RUNOFF Command

The RUNOFF command enables the user to access the RUNOFF subsystem from the
EDITOR subsystem without the need to return to the SYSTEM ? level. When the
user gives the RUNOFF command, the RUNOFF subsystem generates the response
to indicate its availability to accept a RUNOFF subsystem command. (See Section
IV.) After the user has performed desired RUNOFF functions, a DONE command
re-accesses the EDITOR subsystem.

VERIFY Command and NOVERIFY Command

The VERIFY command enables the user to set the mode of the EDITOR subsystem
so as to verify the execution of an EDITOR command. For positioning commands,
the VERIFY command causes a printout of the line at which the search pointer is
positioned when the positioning command is given. For text altering commands in
line mode, the VERIFY command causes a printout of the line preceding the
change, the affected change, and the line following the change. Although the
line following the change is printed, the search pointer remains at the last
line affected.

For text altering commands in string mode, the VERIFY command causes a
printout of the one or more lines affected by the change. The NOVERIFY command
removes the VERIFY mode.

*EDITOR OLD filename
-VERIFY
(EDITOR positioning and text altering commands are verified
by the EDITOR subsystem upon execution. The VERIFY command
will remain in effect until nullified by a NOVERIFY command.)

Verification of a particular EDITOR command is achieved by appending the
letter V to the command verb.

-FINDV:/xxx/;n ' S
(Upon finding the nth occurrence of the specified line,
the line is printed out.)

-REPLACEVS:/xxx/:/bbb/
(Upon replacement of string xxx by string bbb, the altered line
is printed out.)

The appended V affects the command once only; the verification is not
repeated for subsequent uses of the command.

7/77 3-43 DD18B

CASE Command and STANDARD Command

The CASE command enables the user to set the mode of the EDITOR subsystem
so as to permit it to search a dual-case (upper and lower) text file from a
terminal with a single-case keyboard.

The STANDARD command removes the EDITOR subsystem from the CASE mode.

The formats and execution of the CASE command are as follows, d
representing a delimiter other than that used for delimiting string fields. The
delimiter must be a character not contained within the file.

ExecutionCommand
CASE String fields of commands

location by text, ignoring c<
cause

ise.
search and

CASE UPPER d String fields of commands cause
location of upper case text. The
delimiter denotes upper case text for
insertion.

search and
specified

display or

CASE LOWER d String fields of commands caus
location of lower case text,
delimiter denotes lower case text
insertion.

e
The

for
search and

specified
display or

For example, a line of text in a file consists of the following:
EDITOR and RUNOFF are subsystems of TEXT EDITOR.

The user is restricted to an upper case terminal.

-CASE
-PRINT:/EDITOR/
EDITOR AND RUNOFF ARE SUBSYSTEMS OF TEXT EDITOR

-CASE UPPER $
-PRINT
$EDITOR$ AND $RUNOFF$ ARE SUBSYSTEMS OF $TEXT$ $EDITOR$
-REPLACES:/SUBSYSTEMS/:/SUBSYSTEMS/

The line of text in the file now consists of the
following:

EDITOR and RUNOFF are Subsystems of TEXT EDITOR.

Note that the specified delimiter does not become part of the text.

DD18

MODE Command

The MODE command provides the terminal operator with a method of
determining previously established modes (Verify, String, Line, Case, etc.)*
The verb "MODE" or short form M can be typed to determine which modes have been
set.

TRANSPARENT Command

The TRANSPARENT (T) command allows the user to search the current file for
all transparent characters (nonprinting characters octal 000 through 037). The
search begins at the current line pointer position through to the end of file.
Each line found containing transparent characters is printed and the character
is bracketed by asterisks and printed in translated form. For example, a line
containing a backspace would be printed as follows:

This line has a backspace *BSP* here.

MARK Command

Whenever a user types MARK, a search of the file is begun for a line
commencing with a ".MARK” or ".MARK FILENAME". If a line starting with ".MARK"
is located, and a file name is specified, the file will be accessed and the data
on the specified file will replace the ".MARK" line. If the line does not
contain a file name, the user will be queried as to the file to be accessed. If
a ".MARK" line is not found, the user will be so informed.

Files accessed utilizing the ".MARK FILENAME" sequence may contain embedded
".MARK" lines. If the "MARK" command (verb) is followed with a repeat of
each time a normal end of file condition is reached following a successful
access of a specified "MARK" file, the current file is searched again to ensure
that the accessed file did not contain a ".MARK" line. \

-■ - I \

/ /' . ./ *Limitations: 1. MARK operates in a "NOVERIFY" environment.
2. The "MARK" command cannot be used in conjunction with the

"LIMIT" function since "LIMIT" checks to see if file is line
numbered.

3. Catalog/file strings are not permitted, nor are multiple
files; e.g., filel;file2, etc.

DD18B

... .

and and BEFLIN CommandAFTLIN Co

AFTLIN and BEFLIN are acronyms for "AFTer LINe" and "BEFore LINe". They
allow the user to append data at the end of the line(s) or at the beginning of
the line(s).

AFTLIN (short form A) command allows the user to append data to a line or
number of lines specified in the repeat field. Input data can be entered in
either of two forms.

Input data can follow the repeat factor (;n or ;
data/", example:

*) in form /input

-A;l:/abcdef/
where the string "abcdef" will be appended to the current line (;1).
If the repeat factor (;n) is greater than one, the string "abcdef"
will be appended to the current line plus the next n -1 lines.

2. Input data can follow the ENTER message.

-A;l
ENTER
*abcdef
*CR(carriage return)
NOTE: In the above form, the numeric "1" specifies the current line.

If more than the specified "n" lines of input is entered, the
excess is ignored.

If appears in the repeat field, the input data is appended to all of the
remaining lines. For example:

-A;*
ENTER
*001abc
*002def
*003ghi
*CR(carriage return)
END OF FILE - REQUEST EXECUTED nnn TIMES

In' the above example, input line "OOlabc" is appended to the current line,
input "002def" is appended to the current line plus one, and "003ghi" is
appended to the current line plus two.

BEFLIN, is not permitted a short form since "B" would conflict with the
verb BACKUP; the abbreviation BEFL is permitted. The same rules apply to BEFLIN
as to the AFTLIN, except the input data is prefixed to the beginning of the
line.

7/77 46 DD18B

SECTION IV

RUNOFF SUBSYSTEM

The RUNOFF subsystem allows the user to print a text file in a previously
determined format. The format is directed by control words entered in the file.
The file must be built using the EDITOR subsystem. The RUNOFF control words can
be entered during building of the file or inserted later during editing of the
file.

In addition to imbedded control words, RUNOFF also uses commands that
control the way in which the file is to be saved or printed. These commands are
used after entering RUNOFF and are never inserted in the file.

Logging on the RUNOFF subsystem is
Section III for the EDITOR subsystem.

the same procedure as that described in

*RUNOFF
READY

Logging off the RUNOFF subsystem is accomplished by means of the Time
Sharing System command BYE, given when the message RUNOFF COMPLETE appears or at
the end of a page output when the system is expecting instructions as to how to
proceed. If the user wishes to continue at the terminal instead of logging off
at these times, he can give the REFORM or PRINT command (see below) with desired
operands or he can give the Time Sharing System command DONE to return to the
build mode level.

NOTE: RUNOFF subsystem availability is indicated by a READY response, in
contrast to a response for EDITOR subsystem availability.

RUNOFF COMMANDS

The RUNOFF subsystem permits the use of the following commands:

REFORM
PRINT
SKIP n
NOSTOP
EDITOR
NUMBER

7/77 4-1 DD18B

The REFORM command is required to format (remove RUNOFF control words
entered during the building and/or editing process of) the file. The file can
then be saved and/or printed. The PRINT command can be used to print a file
formatted previously by the use of the REFORM command. The SKIP and NOSTOP
commands can be used in conjunction with either the REFORM or PRINT commands.
The EDITOR command can be given to access the EDITOR subsystem while in RUNOFF.
The NUMBER command indicates the user has a line number file and desires to
reformat the file without line numbers.

REFORM Command

The operand of the REFORM command can contain
commas, and must contain at least two fields.

four fields, separated by

The first field specifies the file name of the data to be formatted. This
field is required. If the file is a current file accessed by another time
sharing subsystem, an asterisk can be used in the first field in lieu of the
file name.

The second field specifies the file name under which the formatted data is
to be saved. This field is optional,
not used.

but must be present when the third field is

The third field contains the command PRINT. This field is optional, but
must be present when the second field is not used.

The fourth field contains the expression COUNT n. COUNT produces, in
formatted text, the relative line number of the source Tile specified in the
first field. N indicates the number of spaces set for the left margin of the
formatted text. This fourth field is optional. Where the field PRINT is not
used, the COUNT n field can replace it. The order of the fields can not be
changed. The n portion of COUNT n is optional, with the following actions
resulting:

1. If n is not present and RUNOFF does not encounter a left margin, six
spaces are provided for the left margin.

2. If n is not present and RUNOFF does encounter a left margin setting,
this margin setting is used.

3. If n is present and RUNOFF does not encounter a left margin setting, n
designates the setting.

4. If n is present and RUNOFF does encounter a left margin setting, the
setting is the larger of the two.

DD18

The following examples illustrate the use of the command (COUNT n can be
used with any of the examples).

REFORM filenamel,filename?,PRINT
READY
This form of the command causes file 1 to be formatted into pages and saved
in file 2. At the same time, the formatted contents of file 2 are printed
out at the terminal.

REFORM filenamel,filename?
READY
This command formats file 1 into pages and saves the formatted text in file
2, to be printed out at a later time. (File ? must be a previously defined
file.)

REFORM filenamel,,PRINT
READY
This command formats file 1 and transmits the formatted text to the
terminal. (The contents of file 1 saved by EDITOR remain saved in
unformatted form.)

PRINT Command

The operand of the PRINT command contains only one field--the file name of
a previously formatted text file. The file name must be the same as the second
field of the REFORM command which saved the text.

PRINT filename?
READY

After a REFORM or PRINT command,
specified are accessed but are yet to
SKIP n and NOSTOP n can be entered.

the system types out READY,
be acted upon. At this time,

The file(s)
the commands

If printing is to be done, READY may be followed by a carriage return, or
one or both of two commands--SKIP n and NOSTOP n.

If only a carriage return is used, the formatted text is printed out one
page at a time, beginning at the first page of the file. After each page is
complete, RUNOFF stops to allow the paper for the next page to be placed in the
terminal. When the new paper is positioned, type a carriage return to start
nrinting again. When all pages have been printed, RUNOFF COMPLETE is typed out.

REFORM filenamel,,PRINT
READY
(carriage return)
POSITION PAPER NOW
(carriage return)

4-3 DD18

SKIP n Command

The SKIP n command allows the user to obtain partial output of the file.
Printing begins at page n+1. When printing stops at the end of each page, this
command can be used.

PRINT filename2
READY
SKIP 8
READY
(carriage return)
POSITION PAPER NOW
(carriage return)
(The ninth page is printed out)
SKIP 3
READY
(carriage return)
(The thirteenth page is printed out)

NOSTOP Command

The NOSTOP command can be used when the terminal is loaded with continuous
paper. RUNOFF does not stop after each page is printed. The SKIP n command can
be used with NOSTOP. The form NOSTOP n permits n consecutive pages to be
printed before a stop is made at the end of tKe nth page.

PRINT filename2
READY
SKIP 8
READY
NOSTOP
READY
(carriage return)
POSITION PAPER NOW
(carriage return)
(Printing begins at the ninth page and continues
to the end of the file unless stopped
manually at the terminal.)

NUMBER Command

The NUMBER command indicates the user has a line numbered and desires to
reformat the file without line numbers. The usage of the command is the same as
for the SKIP and NOSTOP commands.

EDITOR Command

The EDITOR command can be used to access the EDITOR subsystem while in
RUNOFF subsystem without the need to return to the subsystem selection level.
Upon being given the EDITOR command, the EDITOR subsystem responds with the
response. The user can then perform desired editing function and return to the
RUNOFF subsystem by means of the Time Sharing System command DONE.

7/77 4-4 DD18B

A current file must have been created if the EDITOR command is to be used
while in the RUNOFF subsystem. If the system selected at log-on time is RUNOFF
and no current file exists, the use of the EDITOR command generates the message

<52> CURRENT FILE NOT DEFINED

RUNOFF FORMAT CONTROL WORDS

The RUNOFF format control words which can be entered in the text file
during the building or editing process are listed below. Each of these can be
used in an abbreviated form, utilizing the first four letters (e.g., allc).

.allcaps n

.beginpage n

.boldface n

.bottommargin n
/ .break

.center n

.comment

.doublespace

.fill

.footing x,n

.header x,n

.ignore x,x

.indent n

.justify

.leftdent n

.linelength n

. literal

.margin t,b,l,r

.multispace n

.nodent

.nofill

.nojust

.notab

.page x,y,n

.paperlength n

.paragraph

.point n

.reference (x...x)

.replace x,x

.scoreunder n

.singlespace

.space n

.subheading x,n

.subfooting x,n

.subparagraph n

.tabulate t,n,,,n

.topmargin

.undent n

The following rules apply to use of RUNOFF format control words:

1. Each control word must be preceded by a period and followed by a
carriage return. Any text material typed on the same line as the
control word is ignored when printing out the formatted text.

2. Control words can be typed in either uppercase or lowercase.

7/77 4-5 DD18B

3. All legitimate control words are ignored when printing out and do not
appear in the text.

4. Control words that are to remain in effect throughout the file can be
entered once at the beginning of the file and need not be repeated
unless they are cancelled by an imbedded control word. For example:

PAPE 66
LINE 60
TOPM 6
BOTT 6
SING
FILL
JUST

5. The control words and values shown in the above example are those
preset by RUNOFF and need not be entered; they remain in effect unless
changed by the user. No page numbering occurs unless .PAGE is
encountered. Care should be exercised in specifying page size
parameters. RUNOFF formats a full page before printing. The following
page matrix formula can be used to determine a large page format.
Exceeding the results of this calculation leads to a memory fault.

4P 4- (P-T-B+2) (L+2) = 7000
where P = .paperlength n

T » .topmargin n
B = .bottommargin n
L - .linelencth n

6. Words should not be hyphenated at the end of a line when using .FILL.
The carriage return following the hyphen is treated as a space
character and the hyphenated word could appear in the middle of a line
of text as follows:

MULTI- PLIED

A compound, such as "right-hand”, is treated as one word by RUNOFF and
is not split over two lines in order to fill or justify lines.

.ALLCAPS n

Print next n lines in upper case. If n is not used, only the next line is
printed in upper case.

.BEGINPAGE n

Place text following control word on a new page. If n is specified, the new
page is numbered n and succeeding pages are referenced by n.

.BOLDFACE n

Overprint' the next n lines. If n is not used, only the next line is
overprinted. The use of .BOLDFACE and .SCOREUNDER on the same line(s) results in
.SCOREUNDER operation only.

DD18

.BOTTOMMARGIN n

Specify the space from the last
paper. N should equal the number of
used, RUNOFF presets the margin to
within the margin space.

line of text output to the bottom of the
lines desired. If this control word is not
6. Page numbers, if requested, are printed

• B RE AK

The
even

End previous line and
lines previous and
though .FILL has been

start a new line, without inserting a blank line,
following the use of this control word are not joined
specified.

.CENTER n

Center the next n lines. When n is
centered. When centering, do not include
the lines to be centered.

not used, only the next line is
any other RUNOFF control words within

.COMMENT

Prevent printing of all lines of text
encountered.

until another RUNOFF control word IS

.DOUBLESPACE

Specify text to be printed out double spaced.

Lengthen short lines by moving words from the following line and shorten
long lines by moving words to the following line. This is preset by RUNOFF and
is in effect until a .NOFIL is encountered. .FILL does not insert spaces to
justify the right-hand margin.

8/76 DD18A

FOOTING x,n

Specify the number of lines and the position of the foot line to be printed
at the bottom of a page. One line space is automatically inserted before the
footing.

N indicates the number of lines. X can be one of the following
C - Centered on each page.
R - Right justified on each page.
L - Left justified on each page.
A - Alternately right justified on odd numbered pages,

left justified on even numbered pages.
E - Left justified on even numbered pages.
0 - Right justified on odd numbered pages.

The .FOOTING control word can be entered only at the beginning of the file
or after .BEGINPAGE within the file if the foot line is to be changed.
Termination of foot lines is accomplished by use of .FOOTING NO or .FOOTING 0
(numeric).

.HEADER x,n

Specify the number of lines and the position of the header to be printed on
a page. One line space is automatically inserted after the header. To insert a
blank line in the header, use a space character before the carriage return. N
indicates the number of lines. X can be one of the following:

C - Centered on each page.
R - Right justified on each page.
L - Left justified on each page.
A - Alternately right justified on odd numbered pages,

left justified on even numbered pages.
E - Left justified on even numbered pages.
0 - Right justified on odd numbered pages.

For example:

*.HEADER R,3
*TIME-SHARING
* (space)
* (space)

The .HEADER control word can be entered at the beginning of the file and
also just before or after .BEGINPAGE within the file if the heading is to be
changed. Termination of header lines is accomplished by use of .HEADER NO or
.HEADER 0 (numeric).

.IGNORE x,x,

Prevent the symbols listed in the operand from being used as text
characters. Up to 16 characters may be listed for suppression. Use of the

I characters as text is resumed by .IGNORE NO or .IGNORE 0. Numerics are not
| valid symbols for use with .IGNORE.

7/77 4- DD18B

~

.INDENT n

Indent each following line of text the number of spaces specified.
Indentation is preset to zero and is accumulative; that is, subsequent .INDENT
control words add to the total indentation until a .NODENT, .LEFTDENT, or
•UNDENT is encountered.

.JUSTIFY

Insert spaces into the line between words to justify the right-hand margin
to the length specified by .LINE. This is preset by RUNOFF and remains in effect
until a .NOJUST is encountered.

.LEFTDENT n

In an indented area, subtract n spaces from the total indentation, for
all following lines until an .INDENT, .NODENT, or .UNDENT is encountered. If n
is greater than the total indentation, the total is set to zero.

.LINELENGTH n

Specify the length of the line, in characters, for filling and justifying.
N should equal the length in inches multiplied by 10. (6-inch line = 60, 7-inch
Tine = 70, etc.) If this control word is not used, RUNOFF presets the line to
60. The left margin position on the paper is determined manually at the
terminal.

•LITERAL

Print a RUNOFF control word when it appears as part of the text. .LITE can
be used on the same line, preceding-the control word, or on the line before the
control word as shown below.

.LITERAL

.LITE can be used on the same line,

.LITERAL .PAGE n starts page numbering.

DD18

.MARGIN T,B,L,R

Set the four margins of a page. The numerics for T(top) and B(bottom) set
the line count for the top and bottom margins. Numerics for L(left) and
R(right) set the character counts for left and right margins. T (top) and B
(bottom) margins must be specified. Nulling of relative fields will result in a
top and bottom margin of zero.

NOTE: The .MARGIN control word cannot be utilized to change top or bottom
margins in the middle of a page. To change top or bottom margins on
a succeeding page, use .MARGIN within the bounds of the page,
immediately following .BEGINPAGE or the page break.

.MULTISPACE n

Specify text is to be printed out with n line spaces between text lines.
This command overrides any .SINGLESPACE or .DOUBLESPACE command.

.NODENT

In an indented area, reset the total indentation to zero.

.NOFILL

Print all lines exactly as they were typed into the file.

.NOJUST

Stop justification.

.NOTAB

Stop tabulation and return to the previous format instructions.

.PAGE x,y,n

Start page numbering. If n is not present, numbering begins with page 1.
If page numbers are to start with any other number, n should equal the starting
page number.

X and V specify where page numbers are to appear,
more of the following values: X and y. can take one or

B - Bottom of page
T - Top of page
C - Center
L ~ Left justified
R - Right justified
A - Alternating (odd numbers on the right, even on the left)

7/77 4—10 DD18B

Page numbers, if requested, are inserted within the specified margin.

The example below would cause numbering to begin with page 1, numbers to be
printed on alternate sides of the pages, at the bottom.

.PAGE B,A,1

If n is specified and x and y are not, page numbers appear centered and at
the bottom of the page.

.PAPERLENGTH n

Specify the total length of the paper, n should equal the length in inches
multiplied by 6. (11-inch paper = 66, 14-inch paper = 84, etc.) If this control
word is not used, RUNOFF presets the length to 66.

.PARAGRAPH

Preset the line length to its specification before the previous .SUBP
control word. In an indented region, the former indentation total regains
control.

.PARAGRAPH nl,n2

The nl field causes the left margin to be indented the number of spaces
specified. The n2 field causes the first line of the paragraph to be indented
the number of spaces specified.

POINT n

Cause a new page to be formatted. The page number is not incremented, but
appears with a period followed by 1 (p.l). The page incrementing continues
behind the period until terminated with the control word .BEGIN, when page £
resumes incrementing. If the operand n is used, the 1 following the period is
replaced with n.

.REFERENCE (x...x)

This causes the text within the parentheses to be printed as a footnote at
the bottom of the same page. The .REFE must be preceded by a footnote indicator
that must also be the first character(s) within the parentheses; i.e.; no space
is permitted between the first parenthesis and the indicator.

see
(1)
.REFE ((1) This text is a footnote printed
bottom of the page.) below.- -------

at the

4-11 DD18A

When printed by RUNOFF, appears as

below.
see (1)

(1) This text
of the page.

is a footnote printed at the bottom

.REPLACE x,x,

Cause the symbols listed in the operand to be replaced with space
characters. The space characters supplied are not used as word string
terminators in formatting the text. This enables the user to reserve character
spaces for special character insertion, superscr’ipting, subscripting, etc. Up to
16 symbols can be listed for replacement. Use of the symbols as text is resumed
by the control word .REPLACE NO or .REPLACE 0 (numeric).

.SCOREUNPER n

Cause the next input text line or each of the next n input text lines to be
underscored (underlined) in the formatted text. If n is omitted, underscoring is
performed only on the next line of text. The use of .BOLDFACE and .SCOREUNDER on
the same line(s) results in .SCOREUNDER operation only.

.SINGLESPACE

Specify text to be printed out single spaced. If this control word is not
used, and if .DOUBLESPACE is not specified, RUNOFF presets the format to single
space.

.SPACE n

Insert n blank lines spaces. If the end of the page is reached before n
(spaces) are provided, spacing stops. Blank lines are not carried over to the
next page.

4-12 DD18

.SUBHEADING x,n

Specify the number of lines to be printed as a subheading to a previously
defined header.

N indicates the number of lines. X can be one of the following:

C - Centered on each page.
R - Right justified on each page.
L - Left justified on each page.
A - Alternately justified on odd numbered pages,

left justified on even numbered pages.
E - Left justified on even numbered pages.
0 - Right justified on odd numbered pages.

The .SUBHEADING control word can be changed after a .BEGINPAGE within the
file. Termination of the use of the subheading is accomplished using .SUBHEADING
NO or .SUBHEADING 0 (numeric).

.SUBFOOTING x,n

Specify the number of lines to be printed as
previously defined.

a subfooting to a footing

N indicates the number of lines. X can be one of the following:

C ~ Centered on each page.
R - Right justified on each page.
L - Left justified on each page.
A ~ Alternately right justified on odd numbered pages,

left justified on even numbered pages.
E - Left justified on even numbered pages.*
0 - Right justified on odd numbered pages.

The .SUBFOOTING control word can be entered only at the beginning of the
file or after a .BEGINPAGE within the file. Termination of the use of the
subfooting is accomplished using .SUBFOOTING NO or .SUBFOOTING 0 (numeric).

.SUBPARAGRAPH n

Indent the beginning of each line n and subtract n spaces from the end of
the line. For example, if the line length is 60 and .SUBP 5 is used, the lines
following are 50 characters long.

In an indented region, the subparagraphing is affected by the total
indentation. For example:

.LINE 60

.INDENT 5

.SUBP 5
results in lines 45 characters long, indented 10 spaces from the left margin.

DD18

..

.TABULATE t,n, .. .n

Set simulated tabs on the horizontal line locations specified by the values
of n. When building the file, enter a tabulation character (any keyboard
character other than a blank, control character, or one being used as a
delimiter) at the beginning of each tabulated field, as this character is used
by RUNOFF. See the following examples.

.TABU t,10,20,30
txxxxtyyyytz zz z
txxxxtyyyytzz zz

When printing in RUNOFF, the following result
(columns) 10 20 30

xxxx yyyy
yyyy

zzzz
z z z z

When using a terminal that has no tab control key, any symbol can be chosen
as a tabulation character. The symbol is not printed out during RUNOFF but can
be read when using EDITOR. .TABU operates in a .NOFIL environment.

.TOPMARGIN n

Specify the space from the top of the paper to the first line of output. N
should equal the space desired multiplied by 6. (1-inch margin = 6, etc.) If
this control word is not used, RUNOFF presets the margin to 6. Page numbers, if
requested, are printed within the margin space.

UNDENT n

In an indented area, causes n to be subtracted from the total indentation
for the next line only.

4-14 DD18

APPENDIX A

SUMMARY OF EDITOR COMMANDS A

In this summary, the following conventions are used:

XXX

yyy and zzz

bbb

n

/

represents a string of characters, any length, that
matches the beginning of one or more lines in the file.

represent string of characters, any length, that may or
may not match the beginning of a line in the file.

represents a string of characters to be inserted or to
replace another string.

represents a number or an asterisk. The * indicates
the action is to be repeated throughout the file.

slants are used as delimiters; any other character can
be used instead.

the underscored initial letter of the command implies
permissible abbreviation. if the command contains an s
for string mode, the abbreviation can be the initial
and final letters;

Command

AFTLIN;n:/data/

BACKUP;n

BEFLIN;n:/data/

BUILD
CASE

COPY;n

COPY:/xxx/

COPY:/xxx/;n
COPY:/xxx/,/yyy/

Execution

Append the “data” specified to the end of n
lines.

Return search pointer to the beginning
file or back up the number of
specified.

of the
lines

Append the ’’data” specified to the beginning
of n lines.

Append text to file.
Set mode of EDITOR to permit
dual-case text. to search

Copy line or lines where search pointer is
currently located.

Copy line identified by xxx.

Copy the next n lines identified by xxx.

Copy the lines identified by xxx through yyy.

8/76 A— 1 DD18A

copy :/xxx/,/yyy/;n

copys:/yyy/

COPYS:/yyy/;n

COPYS:/yyy/,/zzz/

COPY:/stl/+.../stn/

COPY:/stl/-.../stn/

CUT or CUT;n

CUT:/xxx/
CUT:/xxx/;n

CUT:/xxx/,/yyy/

CUT:/xxx/,/yyy/;n

CUTS:/yyy/

CUTS:/yyy/;n

CUTS:/yyy/,/zzz/

CUT:/stl/+.../stn/

CUT:/stl/-.../stn/

DELETE or DELETE;n

DELETE:/xxx/ «■»
DELETE:/xxx/;n

DELETE:/xxx/,/yyy/

DELETE:/xxx/,/yyy/

DELETES:/yyy/

8/76

Copy the next n line groups identified by xxx
through yyy.
Copy the line that contains the specified
string.
Copy n occurrences of the line that contains
the specified string.

Copy text
inclusive.
this form.)

between points yyy and zzz,
(A repeat field can be used with

Copy line containing all specified strings.
(A repeat field can be used with this form.)
Copy line containing only one of specified
strings. (A repeat field can be used with
this form.)
Copy and remove line or lines where search
pointer is currently located.
Copy and remove line identified by xxx.I
Copy and remove the next n lines identified
by xxx.
Copy and remove the block of lines identified
by xxx through yyy.
Copy and remove the next n blocks of lines
identified by xxx through yyy.
Copy and remove the line that contains the
specified string.
Copy and remove the next n occurrences of the
line that contains the specified string.
Copy and remove text between points yyy and
zzz, inclusive. (A repeat field can be used
with this form.)
Copy and remove line containing all specified
strings. (A repeat field can be used with
this form.)
Copy and remove line containing any one of
specified strings. (A repeat field can be
used'with this form.)
Delete line or lines where search pointer is
currently located.

n

Delete line identified by xxx.
Delete the next n lines identified by xxx. mm
Delete the block of lines identified by xxx
through yyy.
Delete the next n blocks of lines identified
by xxx through yyy.
Delete specified string.

A-2 DD18A

DELETES:/yyy/;n

DELETES:/yyy/,/z z z/

DELETE:/stl/+.../stn/

DELETE:/stl/~.../stn/

FIND
FINDyn
■MB

FIND:/xxx/;n

FINDS:/yyy/
finds:/yyy/;n

INSERT
■MM*

INSERT:/xxx/
nil—ii

INSERT:/xxx/;n

INSERTS:/yyy/
INSERTS:/yyy/;n

INSERT:/xxx/:/bbb/

INSERT:/xxx/;n:/bbb/

INSERTS:/yyy/:/bbb/
INSE RTS:/yyy/;n:/bbb/

INSERT:/stl/+. ../stn/
■MB

INSERT:/stl/-.../stn/

LINE
MARK filename

MODE

Delete n occurrences of specified string.
Delete text between points yyy and zzz,
inclusive. (A repeat field can be used wTth
this form.)

Delete line containing all specified strings.
(A repeat field can be used with this form.)
Delete line containing any one of specified
strings. (A repeat field can be used with
this form.)
Advance search pointer one line.
Advance search pointer n lines.

Find nth line identified by xxx.
Find line containing specified string.
Find line containing the nth occurrence of
specified string.
Insert after the line where the search
pointer is currently located, except when at
the beginning of the file.

Insert after the line identified by xxx.
Insert after each of the next n lines
identified by xxx.

Insert after point yyy. 4b
Insert after each of n successive occurrences
of yyy*

Insert string bbb after the line identified
by xxx.
Insert string bbb after each of the next n
lines identified by xxx.

Insert string bbb after yyy.
Insert string bbb after each of n successive
occurrences of yyy.
Insert after line containing all specified
strings. (A repeat field can be used with
this form.)

Insert after line containing any one of
specified strings. (A repeat field can be
used with this form.)
Return EDITOR to line mode.
Search the file for a .MARK line.
Used to determine previously established
modes (Verify, String, Line, Case, etc.)

8/76 DD18A

NOVERIFY

PASTE

PASTE:/xxx/
PASTE:/xxx/;n

PASTES:/yyy/
PASTES:/yyy/;n

PRINT
PRINT;n

PRINT; *
PRINT:/xxx/
PRINT:/xxx/;n

PRINT:/xxx/,/yyy/

PRINT:/xxx/,/yyy/;n

PRINTS:/yyy/

PRINTS:/yyy/;n

PRINTS:/yyy/,/zzz/

PRINT:/stl/+.../stn/

PRINT:/stl/-.../stn/

*

REPLACE

REPLACE:/xxx/ ■■MB

REPLACE:/xxx/;n
replace:/xxx/,/yyy/

REPLACE:/xxx/t/yyy/;n

REPLACES:/yyy/;n

Nullify VERIFY command.

Insert text after the line where the search
pointer is located, except when at the
beginning of file.

Insert text after the line identified by xxx.
Insert text after the next n lines identified
by xxx.

Insert text after point yyy.

Insert text after each of n successive
occurrences of yyy.
Print one line.

Print n consecutive lines. •MfMt
Print entire file.

Print line identified by xxx.

Print the next n lines identified by xxx.

Print the block of lines starting with xxx
through yyy.

Print the next n blocks of lines starting
with xxx through yyy.

Print line containing the specified string.
Print n lines containing occurrences of the
specifTed string.

Print from’ line containing yyy to line
containing zzz, inclusive. (A repeat field
can be used with this form.)

Print line containing all specified strings.
(A repeat field can be used with this form.)
Print line containing any one of specified
strings. (A repeat field can be used with
this form.)

Replace line where search pointer is
currently located.

Replace line identified by xxx.

Replace the next n lines identified by xxx»
Replace the block of lines starting with xxx
through yyy.

Replace the next n blocks of lines starting
with xxx through yyy.

Replace n successive occurrences of yyy.

7/77 A-4 DD18B

fr

REPLACES:/yyy/,/zzz/

REPLACE:/xxx/:/bbb/
IB—»

REPLACE:/xxx/;n:/bbb/

REPLACES:/yyy/:/bbb/ —> —
REPLACES:/yyy/;n:/bbb/

REPLACES:/yyy/,/zzz/:/bbb/

REPLACE:/stl/+.../stn/

REPLACE:/st1/-.../stn/

RUNOFF

STANDARD
STRING

TRANSPARENT

VERIFY

Replace text
inclusive.
this form.)

between points yyy and zzz,
(A repeat field can be used with

Replace line identified by xxx with string
bbb.
Replace the next n lines identified by xxx
with bbb.

Replace string yyy with bbb.
Replace n successive occurrences of yyy with
bbb.
Replace text between points yyy and zzz,
inclusive, with string bbb. (A repeat field
can be used with this form.)
Replace line containing all specified
strings. (A repeat field can be used with
this form.)
Replace line containing any one of specified
strings. (A repeat field can be used with
this form.)
Access RUNOFF subsystem without need to
return to system selection level.

Nullify CASE command.
Place EDITOR in string mode.

Search the current file and print all lines
containing transparent characters
(nonprinting characters octal 000 through
037) .
Set mode of EDITOR to verify execution of
EDITOR commands.

A-5 DD18B

■ ■ — ------------

APPENDIX B

SUMMARY OF RUNOFF COMMANDS AND CONTROL WORDS

In this summary, the following conventions are used:

n - represents any number
Fl - represents an input file
F2 - represents the name cf a formatted file

Command
REFORM F1,F2

REFORM Fl,,PRINT

REFORM Fl,F2,PRINT

PRINT F2

SKIP n

NOSTOP

EDITOR

Execution
Format the contents of Fl and save it under
the F2 name.
Print the formatted contents of Fl but do not
save the file in formatted form.
Format the contents of Fl, save it under the
F2 name, and print the formatted text.
Print the formatted file saved by a previous
RE FO RM comm and.

Skip the specified number of formatted pages.
Printing starts on page n+1.

each page
Access
return

the EDITOR subsystem
to SYSTEM? level.

stopping at the

without need to

Print continuously, without
end of

Control Words
.ALLCAP n
.BEGINPAGE n

.BOLDFACE n

.BOTTOMMARGIN n

* BREAK

•CENTER n

Execution
Print next n lines in upper case.
End printing on this page and place following
text on the next page, numbered n.

Overprint the next n lines.
Specify the size of the bottom margin in
terms of print lines.
Do not join
previous line

the following line to the
(as in .FILL or .JUST).

Center the next n lines.

DD18

1
.COMMENT

♦DOUBLESPACE
• FILL

.FOOTING x,n

♦HEADER x,n

♦IGNORE x,x

♦INDENT n

♦JUSTIFY

.LEFTDENT n

.LINELENGTH n

.LITERAL

.MARGIN t,b,l,r

.MULTISPACE n

.NODENT

.NOFILL

.NOJUST

.NOTAB

.PAGE x,y , n

.PAPERLENGTH n

.PARAGRAPH

.PARAGRAPH nl, n2

•POINT n

.REFERENCE (x..x)

Do not print following lines of text until
another control word is found.
Double space the formatted text.
Move words to shorten long lines and lengthen
short lines.

Print n lines of foot line in location
specified.

Speciry the number of lines and location of
the page heading. That number of following
lines will be printed at the top of each
page.

Cause symbols listed not to be used as text
characters.

Indent n spaces at the beginning of all
tollowing lines. N is added to the
accumulated total.

Insert spaces between words to justify the
right margin.

Subtract n spaces from the accumulated indent
total for all following lines.

Specify the length of the line in terms of
character spaces — 10 per inch.

Print the following RUNOFF control word as
part of the text.

Set designated margins.

N space the formatted text.
»■

Set the accumulated total of indent n’s to
zero. ~

Print all lines as they were entered.
Do not justify right margin.

Stop tabulation and return
format. to previous

-Number pages, beginning with n. Print page
numbers in location

Specify the size of the paper in terms of
print lines — 6 per inch.

After subparagraphing, return to the previous
line length.

The nl field causes the left margin to be
indented the number of spaces specified. The
n2 field causes the first line of the
paragraph to be indented the number of spaces
specified.

Cause a new page to be formatted.

Print footnote within the parentheses at the
bottom of the page.

8/76 B-2 DD18A

.REPLACE x,x

.SCOREUNDER n

.SINGLESPACE

.SPACE n

.SUBFOOTING x,n

.SUBHEADING x,n

.SUBPARAGRAPH n

.TABULATE t,n,...,n

. TOPI1ARGIN n

.UNDENT n

Listed symbols are replaced with space
characters.
Underscore next n lines.
Single space the formatted text.
Insert n line spaces before printing next
lines.
Print n lines of subfoot lines in location
specifTed.
Print n lines of subhead line in location
specifTed.
Shorten lines by n character spaces at the
beginning and end of each line.
Set tabs as specified by n.
Specifies the size of the top margin in terms
of print lines.
Subtract n spaces from the indent total for
the next line only.

8/76 3 DD18A

APPENDIX C

RUNOFF EXAMPLES

Examples are given on the
The left-hand page contains
right-hand page shows the same

following pages to illustrate the use of RUNOFF,
the text and instructions in the file. The
portion of the file as it is formatted by RUNOFF.

—1 DD18

.pape 65

.line 67

.page 1

.topm 6
• bott 6
. just
.repl &
.header r,l
Text Editor
.subheading r,l
Examples
.space 4
. cent
SECTION I
.space 2
«cent
INTRODUCTION
•space 4
&&&&&This manual describes the Text-Editing Subsystems of the
Time Sharing System, EDITOR and RUNOFF. Use of these subsystems
does not require any knowledge of programming; however, the
following brief descriptions of computer systems and the terms
used in the manual will be helpful to the terminal operator,
.space 2
&&&&&ln this manual, a "computer system" is an information
processing system. It may be located many miles from the
terminal through which information is being entered. The total
system consists of hardware (printers, card readers and punches,
permanent magnetic storage devices, processing equipment, etc.)
and programs (sets of instructions that tell a computer how to
accomplish a specific task). The Time Sharing System is one of
many such programs,
•space 2
&&&&&The Time Sharing System is made up* of several small
programs called "subsystems". (See Figure 2 and (1) below.)
This manual covers two of these subsystems in detail. Other
subsystems, not required for text-editing purposes, are covered
in other manuals,
.nojust
.refe ((1) See Text Editor manual, DD18.)
.begi

DD18

SECTION I

INTRODUCTION

Text Editor
Examples

This manual describes the Text-Editing Subsystems of the
Time Sharing System, EDITOR and RUNOFF. Use of these subsystems
does not require any knowledge of programming; however, the
following brief descriptions of computer systems and the terms used
in the manual will be helpful to the terminal operator.

In this manual, a ’’computer system" is an information
processing system. It may be located many miles from the terminal
through which information is being entered. The total system
consists of hardware (printers, card readers and punches, permanent
magnetic storage devices, processing equipment, etc.) and programs
(sets of instructions that tell a computer how to accomplish a
specific task). The Time Sharing System is one of many such
programs.

The Time Sharing System is made up of several small programs
called "subsystems". (See Figure 2 and (1) below.) This manual
covers two of these subsystems in detail. Other subsystems, not
required for text-editing purposes, are covered in other manuals.

TO See"'Text Editor manual, DD18.

1

C- 3 DD18

. pape 65

.line 67

.repl &

. heade r r,1
Text Editor
.subheading r,l
Example s
.footing c 11
Time Sharing System
.subfooting c, 2
Text
Editor
.space 4
. cent
PROCESSOR
.space 3
.nofil
.cent 4
Memory
Where Programs
are Stored
(During Use)
.space 3
.tabu 2,10,29,44
zMagnetic Tapes
zDisks, and DrumszInput/OutputzPrinters
zwhere programszControllerszCard Punches
zare stored whenzzCard Readers
znot being used
.notab
.j ustify
.space 3
. cent
TERMINAL(S)
.space 3
. cent
Figure 1-1. Information Processing System
.space 4
&&&&&The following verbs may not have an operand field:
.space 2
.tabu t,10,31,50
tLINE or LtRUNOFFtSTANDARD
tSTRING or StVERIFY
tBUILDtNOVERIFY
.notab
.fill
.begi

DD18

Text Editor
Examples

PROCESSOR

Memory
Where Programs

are Stored
(During Use)

Magnetic Tapes,
Disks, and Drums
where programs
are stored when
not being used

Input/Output
Controllers

Printers
Card Punches
Card Readers

TERMINAL(S)

Figure 1-1. Information Processing System

The following verbs may not have an operand field:

LINE or L
STRING or S
BUILD

RUNOFF
VERIFY
NOVERIFY

STANDARD

Time Sharing System
Text
Editor

DD18

.pape 65

.line 67

.repl &

.header r, 1
Text Editor
.subheading r,l
Examples
.space 4
&&&&&The use of the verbs and operands are fully explained
and illustrated in
. score
Editor Commands
later in this chapter. The restrictions and usage vules
which apply to the operand field are explained Ia.
.score
Operand Field
below,
.space 2
.subp 5
The editor responds to the commands with messages that
inform the user when a command has been executed, a mistake
in command format has been made, or the end of the file has
been reached. These messages are described in
.score
Responses from Editor.
. para
.space 3
.allcaps
operand field
.space 2
&&&&&As stated above, the operand field can contain one
or more of the following:
.space 2
.indent 10
.undent 5
1. Mode Indicators -
”S” for string mode and ”L" for line mode
.space
.undent 5
2. String field, preceded by a colon
.space
.undent 5
3. Repeat field, preceded by a semicolon
.leftdent 5
.space 2
If more than one of these-items is used in a single
command, the order must be as shown previously.
.nodent
.space 3
.score
Mode Indicators
.space 2
&&&&&The mode indicators used with the Editor verbs are
”S" for string mode and "L" for line mode. The mode
determines the type of operation to be performed and the
interpretation of the string field. See Figure 3.
.ignore no
.begin

DD18

Text Editor
Examples

The use of the verbs and operands are fully explained and
illustrated in Editor Commands later in this chapter. The
restrictions and usage rules which apply to the operand field are
explained in Operand Field below.

The editor responds to the commands with messages that
inform the user when a command has been executed, a
mistake in command format has been made, or the end of
the file has been reached. These messages are described
in Responses from Editor.

OPERAND FIELD

As stated above, the operand field can contain one or more of
the following:

1. Mode Indicators -
”S” for string mode and "L" for line mode

2. String field, preceded by a colon

3. Repeat field, preceded by a semicolon

If more than one of these items is used in a single command,
the order must be as shown previously.

Mode Indicators
r

The mode indicators used with the Editor verbs are *‘S” for
string mode and ”L* 8 for line mode. The mode determines the type of
operation to be performed and the interpretation of the string
field. See Figure 3.

C-7 DD18

INDEX

ALLCAPS
.ALLCAPS

BEGINPAGE
.BEGINPAGE

BOLDFACE
.BOLDFACE

BOTTOMMARGIN
.BOTTOMMARGIN

BREAK
.BREAK

.CENTER
.CENTER

.COMMENT
.COMMENT

.DOUBLESPACE
.DOUBLESPACE

.FILL
.FILL

.FOOTING
.FOOTING

.HEADER
.HEADER

.IGNORE
.IGNORE

.INDENT
.INDENT

.JUSTIFY
.JUSTIFY

.LEFTDENT
.LEFTDENT

.LINELENGTH
.LINELENGTH

.LITERAL
.LITERAL

4—6

4-6

4-6

4-7

4-7

4-7

4-7

4-7

4-7

4-8

4 — 8

4 — 8

4-9

4—9

4 — 9

4-9

4-9

DD18

.MARGIN
.MARGIN

.MULTISPACE
.MULTISPACE

.NODENT
.NODENT

.NOFILL
.NOFILL

.NOJUST
.NOJUST

.NOTAB
.NOTAB

.PAGE
.PAGE

.PAPERLENGTH
.PAPERLENGTH

.PARAGRAPH
.PARAGRAPH

•POINT
.POINT

.REFERENCE
.REFERENCE

.REPLACE
.REPLACE

.SCOREUNDER
.SCOREUNDER

.SINGLESPACE
.SINGLESPACE

.SPACE
.SPACE

.SUBFOOTING
.SUBFOOTING

.SUBHEADING
.SUBHEADING

.SUBPARAGRAPH
.SUBPARAGRAPH

.TABULATE
•TABULATE

.TOPMARGIN
.TOPMARGIN

•UNDENT
.UNDENT

ADDING
BUILDING OR ADDING TO A FILE

4-10

4-10

4-10

4-10

4-10

4-10

4-10

4-11

4-11

4-11

4-12

4-12

4-12

4-12

4-13

4-13

4-13

4-14

4-14

4-14

DD18

AUTOMATIC
AUTOMATIC DISCONNECTION 2-2
♦AUTOMATIC command 3-3

BACKUP
BACKUP Command 3-18

BPRINT
BPRINT 2-4

BPUNCH
BPUNCH 2-4

BUILD
BUILD Command 3-42
BUILDING OR ADDING TO A FILE 3-2

CASE
CASE Command 3-44

COMMAND
♦AUTOMATIC command 3-3
BACKUP Command 3-18
BUILD Command 3-42
CASE Command 3-44
COPY Command 3-36
Command Format 3-9
CUT Command 3-37
DELETE Command 3-29
EDITOR Command 4-4
FIND Command 3-22
INSERT Command 3-32
LINE Command 3-18
NOSTOP Command 4-4
NOVERIFY Command 3-43
NUMBER Command • 4-4
PASTE Command 3-38
PRINT Command 4-3
PRINT Command 3-19
REFORM Command 4-2
REPLACE Command 3-25
RESEQUENCE command 3-4
RUNOFF Command 3-43
SKIP n Command 4-4
STANDARD Command 3-44
STRING Command 3-17
VERIFY Command 3-43
EDITOR COMMANDS 3-17
RUNOFF COMMANDS " 4-1
TIME SHARING SYSTEM CONTROL COMMANDS 3-16

COPY
COPY Command 3-36

CUT
CUT Command 3-37

DELETE
DELETE Command 3-29

i-3 DD18

EDITOR
EDITOR COMMANDS 3-17
EDITOR Command 4-4
EDITOR LANGUAGE 3-9
Responses from EDITOR 3-14

ERROR
ERROR MESSAGES 2-3

FIELD
Operand Field 3-10
REPEAT FIELD 3-13
STRING FIELD 3-12

FILE
BUILDING OR ADDING TO A FILE 3-2
PROTECTING FILES 3-6

FIND
FIND Command 3-22

FORMAT
Command Format 3-9
RUNOFF FORMAT CONTROL WORDS 4-5
RUNOFF Format Control Words 3-16

HELP
HELP SUBSYSTEM 2-3

INDICATOR
' MODE INDICATOR 3-11
INSERT

INSERT Command s 3-32

KEYBOARD
Terminal Keyboard 3-2

LIMIT FUNCTION
LIMIT Function 3-18

LINE
LINE Command 3-18

LOG-OFF PROCEDURE
LOG-OFF PROCEDURE 2-2

LOG-ON PROCEDURE
LOG-ON PROCEDURE 2-1

MESSAGES
ERROR MESSAGES 2-3

MODE
MODE INDICATOR 3-11
#NO Mode 3-14
IGNORE MODE 3-14

NOSTOP
NOSTOP Command 4-4

i—4 DD18

NOVERIFY
NOVERIFY Command 3-43

NUMBER
NUMBER Command 4-4

OPERAND
Operand Field 3-10

PAPER TAPE
Paper Tape 3-5

PASTE
PASTE Command 3-38

POINTER
SEARCH POINTER 3-8

PRINT
PRINT Command 3-19
PRINT Command 4-3

PROTECTING
PROTECTING FILES 3-6

REFORM
REFORM Command 4-2

REPEAT
REPEAT FIELD 3-13

REPLACE
REPLACE Command 3-25

RESEQUENCE
RESEQUENCE Command 3-4

RUNOFF
RUNOFF COMMANDS 4-1
RUNOFF Command 3-43
RUNOFF FORMAT CONTROL WORDS 4-5
RUNOFF Format Control Words 3-16

SEARCH
SEARCH POINTER - 3-8

SKIP
SKIP n Command 4-4

STANDARD
STANDARD Command 3-44

STRING
STRING Command 3-17
STRING FIELD 3-12

TERMINAL
CONNECTING TERMINAL 2-1
TERMINAL OPERATION 2-3
Terminal Keyboard 3-2

i-5 DD18

TIME SHARING
TIME SHARING SYSTEM
TIME SHARING SYSTEM CONTROL COMMANDS

VERIFY
VERIFY Command

